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ABSTRACT
We propose a formal mathematical approach to assimilate

LES data into values of RANS model parameters combined with
some prior knowledge of the expected RANS parameter values.
This is achieved using Bayesian inference to determine parame-
ter values that maximize their posterior probability and is known
as maximum a posteriori (MAP) estimation. We apply this ap-
proach to a premixed turbulent methane-air round jet flame us-
ing unburnt mixture equivalence ratio and bulk flow velocity as
design parameters. Three dimesional LES data for six design
cases are computed and upto three of these are used for MAP es-
timation. The likelihood is constructed using RANS solutions and
flow statistics from LES at training data points. The k-ε model
is used for turbulence closure and the eddy dissipation concept
(EDC) model is used to model combustion. RANS solutions us-
ing MAP estimate parameters at design points not in the training
set show significantly better agreement with LES solutions for
species mass fraction and temperature fields while only marginal
improvement is observed for velocity fields. We show that assim-
ilating RANS model parameters for both k− ε and EDC models
together yields a higher marginal likelihood than the case that
leaves out the EDC model parameters. These results demon-
strate the viability of MAP estimation as a means to improving
the reliability of turbulent reacting flow RANS simulations for
engineering design and optimization applications.

∗Corresponding author. E-mail: hsantosh@iisc.ac.in

1 INTRODUCTION

Flow through a gas turbine or aircraft engine combustor is
typically highly turbulent and includes regions with flames. The
reliable prediction of turbulent reacting flow fields, given oper-
ating conditions and flow geometry, is important for engineering
design and optimization of these devices. Computational Fluid
Dynamics (CFD) is a powerful analysis tool that solves the gov-
erning equations of turbulent reacting flow on a grid of points
in space and time. Methods such as direct numerical simula-
tions (DNS), which resolve the entire range of flow length and
time scales, are prohibitively computationally expensive for the
design of practical combustors. Accordingly, for practical appli-
cations, the class of CFD techniques known as large eddy sim-
ulation (LES) is typically used [1]. LES resolves the dynamics
of a subrange of the largest flow scale motions in a time accurate
manner. Statistics of flow field quantities are then determined by
time averaging these solutions. Even LES methods are, however,
too computationally expensive for use in practical engineering
design optimization methods.

The class of CFD methods based on the Reynolds or Favre
averaged Navier–Stokes equations, referred to collectively as
RANS, allows the direct prediction of time averaged flow statis-
tics at a significantly smaller computational cost compared with
LES. The influence of turbulence is modelled using closure mod-
els for turbulent stresses, transport fluxes, and time averaged
mean reaction rates. However, since these closure models model
the impact of the entire range of flow scales on the time aver-
aged statistics, RANS solutions are more sensitive to changes
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in model parameters than LES solutions. Traditionally, RANS
model parameters are chosen by comparing RANS predictions
of time averaged and/or RMS values of flow field quantities with
those from experimental measurements or DNS - see for ex-
ample [2]. When performed manually, this approach results in
RANS model parameters whose predictions may be poor or may
not provide correct predictions outside a very narrow range of
flow conditions.

Data assimilation of RANS model parameters with Bayesian
inference can potentially overcome this problem [3]. These
methods incorporate knowledge from LES or experimental mea-
surements into RANS model parameter estimates using Bayes’
rule. Importantly, the Bayesian approach allows the uncertainty
in the parameter values to be formally estimated and can guide
the economical acquisition of additional training data [4]. In
the context of gas turbine combustion research, the Bayesian ap-
proach to determine model parameters has recently been applied
to determine thermoacoustic instability model parameters [5].
Studies using Bayesian inference methods have been applied
to infer turbulence model parameters from measurement data
for wall bounded non-reacting flows – see for example refs.
[6, 7]. Xiao and Cinella [8] review Bayesian inference and other
methods for estimating model parameters. To the best of our
knowledge, however, attempts at improving flow predictions for
reacting flows from steady RANS using data from LES solutions
has not been attempted.

In this paper we assess the ability of Bayesian inference to
infer RANS model parameters from LES data of a geometrically
simple turbulent premixed jet flame [9]. The flow configuration
is a premixed methane-air flame at an unburnt gas temperature,
Tu = 800 K and pressure, po = 1 atm. Design parameters are the
equivalence ratio, φ , of the reactant mixture and the nominal in-
let velocity on the centreline, Uc. A dataset of five LES solutions,
performed using the explicit filtering LES (EFLES) approach for
reacting flows described in Datta et al [9], forms the background
data for this study. RANS solutions are obtained using the re-
actingFoam solver implemented using the OpenFOAM solver
framework [10]. The k− ε model [11] and the EDC model [12]
are used to close Reynolds stress and mean reaction rate terms.

A prior probability density function (pdf) is used to express
prior belief in RANS model parameter values. The likelihood
of the LES data for a given choice of RANS model parame-
ters is constructed using the RANS solution for these parame-
ters and time averaged statistics from LES at each training con-
dition. The optimal RANS parameters are then determined as
those that maximize the posterior probability of these parame-
ters determined from Bayes’ rule. This process involves a for-
mally rigorous optimization of a cost function and is known as
maximum a posteriori (MAP) estimation [3, 6, 8].

MAP estimation is applied to a subset of three out of the six
LES cases available. The remainder are used to test the accuracy
of the optimised RANS model at conditions that are not in the

training data. Three model parameters from the k− ε model and
two from the EDC model are used as free parameters for MAP
estimation. Additionally, we assess the relative importance of
the choice of free parameters used in MAP estimation using the
evidence given by marginal likelihood estimates for each choice.
These are determined using Laplace’s method [3]. The first case
varies three parameters in the k − ε model, while keeping the
EDC model parameters at their prior values. The second case
includes two additional parameters from the EDC model, giving
a total of five free parameters.

2 MAXIMUM A POSTERIORI ESTIMATION
Assume M RANS is a set of RANS models that are candidates

for determining time averaged flow through some geometric con-
figuration under appropriate physical boundary conditions. For a
given Hp ∈M RANS, we assume z∈Rm is an m-dimensional vec-
tor of RANS parameters appearing in turbulence closure terms
for model Hp. For a given set of design conditions x ∈ D, where
D is the design space, the RANS solution for given z ∈ Rm is a
mapping yR(z,x) : D → RN where N is the total number of flow
variables at fixed set of comparison mesh points {r1, . . . ,rK} ∈
R3. Typically, yR(z,x) is determined from the solution on the
RANS computational mesh using interpolation. Similarly, the
LES solution is a mapping yL(x) : D →RN defined over the same
design conditions for the same set of mesh points, {r1, . . . ,rK} ∈
R3. We assume that we have a training set of LES solutions,
YL,NT = {yL,1, . . . ,yL,NT } where, yL,k = yL(xk) for xk ∈ D. We de-
fine the function, N (x,A) = [det(2πA)]−1/2 exp(− 1

2 xT A−1x),
i.e. as the multivariate Gaussian distribution with zero mean and
covariance matrix A.

We assume a Gaussian prior on the parameters, z, which is
written as:

P(z|Hp) = N (z− z∗,Az) (1)

where, z∗ ∈Rm are the values of the RANS parameters from prior
studies in the literature for a given RANS model, Hp. We pre-
sume that the parameters are equally uncertain and uncorrelated
and choose Az = diag[σ2

z , . . . ,σ
2
z ]

T where, σz expresses our prior
belief of the uncertainty in z∗. The likelihood distribution of the
training data, YL,NT being predicted by the RANS model, Hp, for
a given choice of parameters, z, is also assumed to be Gaussian:

P(YL,NT |z) =
NT

∏
i=1

N (yR(z,xi)− ȳL,i,AL,i) (2)

where, ȳL,i and AL,i are the time averaged mean vector and diag-
onal matrix of mean squared fluctuation amplitudes of flow field
quantities determined from LES at the design point xi ∈D, on the
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comparison mesh. The vector yR(z,xi) is the flow field prediction
from RANS using model parameters z at xi.

The posterior distribution of z, i.e. the updated belief in the
numerical values of model parameters z, given the training data
YL,NT , is determined using Bayes’ rule:

P(z|YL,NT ) =
P(YL,NT |z)P(z|Hp)

P(YL,NT |Hp)
(3)

Maximizing P(z|YL,NT ) over z ∈ Rm yields optimal RANS pa-
rameters, i.e. those that are associated with high belief, given
the training LES data. These parameters are referred to as the
maximum a posteriori (MAP) estimate and can be determined as
follows. Taking the logarithm of both sides of eq. 3 and rearrang-
ing yields,

− log[P(YL,NT |Hp)] = log[P(z|YL,NT )]

− log[P(z|Hp)]

− log[P(YL,NT |z)]
(4)

The quantity on the left of eq. 4 is a constant, independent of z.
Therefore, maximizing the posterior probability (or equivalently,
its logarithm), is equivalent to minimizing the sum of the second
and third terms on the right in eq. 4, i.e. the sum of the negative
logarithms of the prior and likelihood. Using the expressions for
the prior (eq. 1) and likelihood (eq. 2) in the second and third
terms on the right in eq. 4, yields the cost function that must be
minimized to determine the MAP estimate zMAP:

J(z) =(z− z∗)T A−1
z (z− z∗)+ log[det(2πAz)]

+
NT

∑
i=1

[yR(z,xi)− yL,i]
T A−1

L,i [yR(z,xi)− yL,i]

+
NT

∑
i=1

log[det(2πAL,i)]

(5)

If zMAP is defined as minz∈Rm J(z), then the uncertainty in
zMAP to leading order is determined using Laplace’s method [3],
which approximates the posterior distribution of z around zMAP
using the Taylor expansion of log[P(z|YL,NT )]:

P(z|YL,NT )≈C exp
[
− 1

2
(z− zMAP)

T H(z− zMAP)

]
(6)

where H is the Hessian of the cost function J(z) at z = zMAP:
Hab = [∂ 2J/∂ za∂ zb]|z=zMAP and C is a constant.

At the next level of inference, the marginal likelihood of the
data, YL,NT for a given a RANS model, Hp, is calculated. This is
the denominator of eq. 3:

P(YL,NT |Hp) =
∫
Rm

P(YL,NT |z)P(z|Hp) dV (z) (7)

The marginal likelihood quantifies the evidence that the RANS
model Hp predicts the data YL,NT . The integrand in eq. 7 can be
written using eqs. 4 and 5 as exp[−(1/2)J(z)]. Using the Tay-
lor expansion of J(z) around z = zMAP (Laplace’s method), the
marginal likelihood can be estimated as [3],

P(YL,NT |Hp)≈ P(YL,NT |zMAP)P(zMAP|Hp)det(H/2π)−1/2 (8)

Thus combining eqs. 8 and eq. 5, the negative log evidence
(NLE) can be written as follows

NLE = J(zMAP)+ log[det(H/2π)] (9)

Thus RANS models can be compared in terms of their ability to
predict the data, i.e. given a set of candidate models M RANS, the
model Hp ∈M RANS having the least NLE for a given number of
training data points, YL,NT , is the most likely predictor of the data
.

3 LARGE EDDY SIMULATION
The test case studied in this paper is a turbulent round pre-

mixed methane air flame, shown schematically in fig. 1. Fully
three dimensional computations are performed for an unburnt
gas temperature Tu = 800 K and operating pressure of 1 atm,
on a cylindrical domain as shown in fig. 1. The jet diameter,
D = 2.0 mm and the origin of co-ordinates is on the centerline of
the jet at the dump plane. The inlet is positioned upstream of the
dump plane at z/D = −1. The design parameters for this study
are, x = [φ Uc]

T , where, φ is the upstream equivalence ratio and
Uc is the jet centreline inflow velocity.

LES is performed in this study at design conditions summa-
rized in tab. 1 and plotted in design space in fig. 2. Solutions
for cases 1-3 in tab. 1 are used as training data for MAP estima-
tion and solutions for cases 4-6 are used as test data. The latter
are used to determine how well the RANS model with MAP esti-
mate values for model parameters determined from training data,
extrapolates to other design points.

LES solutions are obtained using the explicit filtering LES
(EFLES) method for reacting flows initally proposed by Mathew
and co-workers [13, 14] for non-reacting flow and extended to
the reacting flows by Datta et al [9]. Note that case 1 in tab. 1
is the same case as in their study. The EFLES method solves
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FIGURE 1: Schematic of Burner Configuration. An instanta-
neous iso-contour of progress variable (based on O2 mass frac-
tion) c = 0.65 is shown (φ = 0.8, Uc = 65 m/s, Tu = 800 K).
The blue box shows the mesh region that nominally contains the
flame.

Sl. num. φ Uc (m/s)

1 0.80 65.0

2 0.80 68.0

3 0.76 64.0

4 0.84 52.0

5 0.88 60.0

6 0.72 56.0

TABLE 1: Design conditions at which LES solutions are obtained
for data assimilation.

the governing equations for reacting flow by first advancing the
flow state through a timestep without including terms for subgrid
scale models and captures the impact of these by spatially low-
pass filtering the result [9]. Chemical source terms are computed
using the resolved scale species and temperature fields with a
reduced order chemical kinetic model for methane-air combus-
tion, proposed by Sankaran et al [15]. Datta et al [9] have shown
that EFLES recovers flow statistics variations in good agreement
with a fully resolved direct numerical simulation (DNS) for case
1 in tab. 1. We refer the reader to their paper for full details of
how EFLES is mathematically derived and quality of agreement
between LES and DNS for case 1. Here, we briefly summarize
details of the numerical method and flow setup.

FIGURE 2: Conditions in design space at which LES solutions
are obtained. Triangles are training cases and pluses are cases
used for testing.

The flow solver integrates the governing equations of com-
pressible reacting flow in a time accurate manner. Computa-
tions are performed using the strong conservation form of the
flow govering equations on structured multiblock meshes – see
for example Visbal and Gaitonde [16]. Spatial flux derivatives
are computed using eighth order explicit central differences and
time integration is performed using a third order Runge-Kutta
scheme [17]. Spatial filtering required to realise EFLES is per-
formed using a tenth order symmetric shift-invariant filter, as
described in Datta et al [9]. The domain shown in fig. 1 is
discretized using a computational mesh with ∼ 480,000 mesh
points. The flame length and velocity scales at the nominal
condition given by case 1 in tab. 1 are: nominal flame speed,
sL = 2.05 ms−1; thermal thickness1, δL = 300 µm; heat re-
lease zone thickness,2 δH = 120 µm, and burnt gas temperature,
Tb = 2313.65 K. The mesh size within the blue box shown in
fig. 1 is ∼ 180 µm = 1.5δH .

Walls are treated using no-slip boundary conditions with a
specified temperature profile. This profile rises smoothly from
Tu = 800 K at the inlet boundary to Tb on the dump plane. Non-
reflecting boundary condition treatments are applied at bound-
aries downstream of the dump plane. All boundary conditions
are implemented using the Navier–Stokes characteristic bound-
ary conditions method [18]. Additionally, sponge zones [19]
shown schematically in fig. 1, are used to damp out vortices
and pressure waves ahead of the downstream boundary. A top
hat mean axial velocity profile with a centerline value of Uc
from tab. 1 is applied in each case. These correspond to flow
Reynolds numbers, Re ∼ UcD/ν ∼ 1500. Additionally, diver-

1Computed from 1D premixed flame temperature profile based on maximum
temperature gradient, δL = (Tb −Tu)/(dT/dx)max

2Estimated as the full width at half maximum (FWHM) of the nominal 1D
premixed flame heat release rate layer
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FIGURE 3: Domain used for RANS modelling of the turbulent
jet flame. The blue box shows the region used to determine the
likelihood of the RANS solutions against LES training data.

gence free synthetic turbulence inflow fluctuations are imposed
in order to realize a turbulent upstream reactant flow at these Re
values. These fluctuations are precomputed so as to conform to
a Von Karman-Pao energy spectrum and advected into the in-
flow plane during LES runs assuming Taylor’s hypothesis. The
DNS solution for case 1 from the work of Datta et al [9], yields
turbulent Reynolds and Karlovitz numbers as 34 and 25 respec-
tively. These values are nominal and place the flames in cases
1-6 in tab. 1 within the thin reactions zone regime of premixed
combustion.

All cases were advanced in time for five complete flow
through times from the dump plane to the downstream outlet
boundary. The final three flow through times were used to collect
statistics of various flow field quantities. Each LES case took a
total of ∼ 5000 core-hours of compute resources and were per-
formed on the high performance compute facility in the depart-
ment of Aerospace engineering at the Indian institute of science.

4 RANS MODELLING
Steady Reynolds averaged Navier-Stokes (RANS) simula-

tion is viewed in this paper as a model that predicts mean flow
field quantities directly given the domain geometry and bound-
ary conditions. For the present flow configuration, in which
time averaged statistics are axi-symmetric, a significant reduc-
tion in computational effort is achieved by performing 2D axi-
symmetric RANS computations. Accordingly, the domain used
for RANS simulations is the area of rotation that generates the
cylindrical LES domain as shown in fig. 3. Computations are per-
formed using the reactingFoam solver available with the Open-
FOAM v2206, open source CFD software suite [10]. The noz-
zle is discretised with 20 cells radially and 35 cells axially. The

domain downstream of the dump plane is discretized using 85
cells radially and 175 cells axially. The whole domain is one cell
thick in the out of r− z plane direction. The mesh is compressed
towards the dump plane wall and the nozzle wall to resolve spa-
tial gradients of flowfield quantities in these regions. Increas-
ing mesh resolution or domain width downstream of the dump
plane resulted in negligible changes in convereged steady state
flow field quantities. The standard k− ε model is used to close
the Reynolds stress terms [11] and the EDC model based on the
energy cascade model of Magnussen [12] is used to determine
time averaged chemical source terms – see Parente et al [2] for
additional discussion.

The boundary conditions imposed on the domain boundaries
are summarized in fig. 3. The time averaged inflow velocity pro-
file is specified using the same top hat profile as in the LES cases,
using the hyperbolic tangent function. A constant inflow turbu-
lent kinetic energy (TKE) intensity of 0.35 is imposed on this
boundary to match the turbulence level specified in the LES. No-
slip boundary conditions are specified on the inlet pipe and dump
plane walls. Constant wall temperatures of 800 K and adiabatic
flame temperature on the inlet pipe and dump plane walls respec-
tively, are specified. An inlet/outlet treatment is applied at down-
stream and lateral boundaries for all flow field variables, with
inlet values specified as the burnt gas temperature and composi-
tion. These values are imposed by the RANS solver whenever
the local fluxes on the boundary cells point into the domain.

The standard k−ε model closes Reynolds stress terms using
an eddy viscosity closure. The eddy viscosity is defined using the
TKE, k and viscous dissipation rate, ε as νt =Cµ(k2/ε). The tur-
bulent kinetic energy equation is solved for k, wherein the sink
term is written in terms of ε and an additional model transport
equation is introduced for ε . The strength of the production and
dissipation terms in the ε equation are adjusted using parame-
ters C1ε and C2ε respectively. We note here that it is well known
that additional terms capturing the physical impact of flow three-
dimensionality, eg. vortex stretching, must be added to the stan-
dard k − ε model equations to correctly recover the spreading
rates of round jets [20–22]. The current implementation of tur-
bulence models available in the reactingFoam solver used in this
work do not directly provide an option to include these terms.
However, the main aim of this paper is to demonstrate and assess
the improvement on RANS predictions that can be obtained us-
ing MAP estimation to assimilate data in model parameters for a
reacting flow. Therefore, extending the formulation of the k− ε

model in the reactingFoam solver was not included within the
scope of this study.

The mean reaction rate is modelled using the eddy dissipa-
tion concept (EDC) model of Magnussen [12]. The EDC models
combustion occurring within fine structures embedded within the
turbulent flow, as being approximated by perfectly stirred reac-
tors. The local mass fraction of these fine structures, γλ and the
mean residence time within them τ∗ are modelled in terms of the
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FIGURE 4: Comparison between bf new 1-step (symbols) and
GRI-Mech 3.0 (curve) predictions of laminar flame speed for
methane-air (Tu = 800 K, p = 1 atm). The grey band shows a
3% error band around the predictions from GRI-mech 3.0.

local k and ε values as follows [2, 12],

γλ =Cγ

(
νε

k2

)1/4

(10)

and

τ
∗ =Cτ

(
ν

ε

)1/2

(11)

where, Cγ and Cτ are model constants. We model chemi-
cal kinetics in the RANS simulations using a single step bi-
molecular global reaction: CH4 +2O2 → CO2 +2H2O, with a
global rate given by, ω̇ = Aexp(−Ea/RT )[CH4]

1/2[O2] where,
A = 6.4× 1012 (mol cm−3)−2 s−1, Ea = 41.27 kcal mol−1 and
R is the universal gas constant. These parameters recover the
laminar flame speed of a freely propagating methane-air flame
to within at least 3% of that predicted by the detailed GRI-Mech
3.0 mechanism [23], across the range of φ values spanned by the
cases in the LES study (tab. 1) - see fig. 4.

Thus, the model parameter vector for MAP estimation can
be written as: z = [Cµ C1ε C2ε Cγ Cτ ]

T . These model parame-
ter values have been determined in previous studies using meth-
ods that minimize the discrepancy between measurements and
RANS predictions. It is easy to see from eq. 2 that this approach
is equivalent to finding parameters that maximise the likelihood
of the data. As such they may be referred to as the maximum like-
lihood estimate (MLE) of the parameters. The MLE approach to
determining parameter values is known to suffer from problems
of “overfitting”, wherein the parameters determined predict the
training data but can cause the model to extrapolate poorly [3].
MAP estimation mitigates this by allowing for the incorporation
of prior insight when determining parameters. A key difference
between MLE and MAP is that while the former maximises the

likelihood of the data, the latter determines parameters that have
highest probability, given a model choice and training data. The
key aim of this paper is to assess the improvement in RANS pre-
dictions achieved by maximising the posterior probability of pa-
rameters given data. Accordingly, we assume the following well
known parameter values [2, 11], as the mean of the prior distri-
bution (see eq. 1):

z∗ = [0.09 1.44 1.92 2.13 0.41]T (12)

An arbitrary variance of 2 for each of the values in eq. 12
is assumed to construct the prior pdf. Note that, from eq. 5,
this value determines the contribution from the negative log of
the prior to the overall cost function and therefore controls the
strength of the penalization imposed by the prior on the MAP
estimate, zMAP. Choosing a small value for the prior variance
implies a high degree of belief in these values and can result in
poor quality of the match between LES and RANS solutions for
z = zMAP. Too large a value of prior variance would undermine
the penalization imposed by the prior on the value of J(z) and
would result in the re-emergence of overfitting.

The LES and RANS solutions are interpolated onto a uni-
form equispaced mesh with 41 points in the axial direction and
8 points in the radial direction in a rectangular region between
0 < z/D < 10 and 0 < r/D < 1.5. We will refer to this mesh as
the comparison mesh. The model prediction yR(z,xk) and data
yL,k for the ith training case in eq. 5, are the vector of axial veloc-
ity, temperature and species mass fraction fields on comparison
mesh points, as determined from the RANS and LES solutions.
The covariance matrix of the likelihood function (eq. 2) is con-
structed using the mean squared fluctuation amplitudes of flow
field quantities interpolated from LES solutions at comparison
mesh points.

A typical LES result (case 1: φ = 0.8, Uc = 65 m/s) showing
the spatial extents of the flame brush is shown in fig. 5a. Spa-
tial distributions of root mean square (RMS) fluctuation ampli-
tudes of temperature (T ′) and axial velocity (u′z,RMS) are shown in
fig. 5b-c for this case. Comparing these results shows that T ′ and
u′z,RMS amplitudes are very small outside the flame brush and jet
core region. Therefore, using these fields directly to determine
data uncertainties in eq. 5 will result in larger contributions to the
net likelihood from points outside the flame brush and jet core,
than from those within. This will in turn, bias the minimization
towards parameter values that yield RANS solutions that agree
better outside the flame brush and jet core, rather than within.
Therefore, for each solution field, a threshold RMS fluctuation
amplitude value of half of its maximum value on the comparison
mesh is used to identify masked points and the RMS fluctuation
amplitude at these points is set to 1.1 times the maximum value.
The masked RMS fields are smoothed using Gaussian filtering
to ensure smoothness of the resulting MAP cost function. Fig-
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(a) (b) (c)

FIGURE 5: Typical spatial variation of the contribution from the
temperature field to the likelihood from LES for case 1 (φ = 0.8,
Uc = 65 m/s, a) Mean b) RMS (raw) c) RMS (masked). Data is
plotted on the comparison mesh.

ure 6a-b shows the masked T ′ and u′z,RMS fields corresponding to
the RMS fields shown in fig. 5b-c. Using these masked fields to
define data uncertainties in eq. 5 now ensures that contributions
to the likelihood from points within the flame brush dominate
the net value of the MAP cost function. This treatment ensures
that the minimization will now select model parameters that pri-
oritise agreement between RANS and LES solutions within the
flame brush. More generally, when applying the present method
to other classes of flows, similar masking may be used to iden-
tify important flow field regions where good prediction accuracy
is needed from RANS solutions.

Minimization of the MAP cost function (J(z), eq.5) is per-
formed in two stages. The first stage is performed using the im-
plementation of the Nelder-Mead simplex algorithm [24] pro-
vided by the fminsearch function in the MATLAB optimiza-
tion toolbox. This algorithm is a gradient-free minimization al-
gorithm that determines an estimate of the minimizer of J(z)
without using function gradients. A final gradient based opti-
mization is performed using the implementation of the interior-
point algorithm provided by the fmincon function in MAT-
LAB. Gradients of J(z) are computed using central second order
finite-differences in parameter space. The use of fmincon also
allows for a search region in parameter space to be specified by
imposing upper and lower bound constraints on parameter val-
ues. The minimum found in this step is verified to lie within the
interior of the search region.

All RANS solutions are initiated from a baseline converged
solution obtained from an arbitrary initial guess using the prior
parameters z∗. The RANS iterations were continued until the
global maximum residual of all equations was below 3× 10−5.
This value was sufficient to ensure the smoothness of J(z) over

(a) (b)

FIGURE 6: Typical spatial variations of masked RMS fields from
LES for case 1 (φ = 0.8, Uc = 65 m/s), used to determine the
likelihood of RANS solutions, a) T b) u′z,RMS. Data is plotted on
the comparison mesh

the space of parameter values encountered during both minimiza-
tion stages. The approximate Hessian returned by the final gradi-
ent based minimization stage is used in eq. 6 to determine the un-
certainty in the MAP estimate of the parameters. The entire MAP
minimization run using three LES data points and five RANS
model parameters took two days of run time on a single core of
a typical workstation desktop computer.

5 RESULTS AND DISCUSSION
We first compare LES and RANS solutions obtained using

parameter values z∗. Note that this amounts to making model
predictions with only prior information and not accounting for
any data. Figure 7a-d shows a typical result comparing time av-
eraged fields from LES and RANS solutions for LES case 4 (see
tab. 1, φ = 0.84, Uc = 52 m/s). Note from fig. 2 that this point is
farthest in design space from the three cases selected for training.
The RANS and LES results are shown on the left and right halves
of each figure respectively. Since the flame is nominally axi-
symmetric, qualitative agreement between RANS and LES solu-
tions can be assessed by comparing left and right halves of each
figure. The solid magenta contours in figs. 7a-c show c̄ = 0.5
contours, where, c̄ is defined for each of Q̄ = T,ȲCH4 ,ȲH2O, using
their values in the burnt (Q̄b) and unburnt (Q̄u) gas in the LES
results as, c̄ = (Q̄− Q̄u)/(Q̄b − Q̄u). The broken magenta curves
in figs. 7a-c are c̄ = 0.5 contours corresponding to Q̄±Q′

RMS in
each case, where, Q′

RMS is the raw RMS field from LES. These
curves show the uncertainty in the spatial position of the c̄ = 0.5
contour in each case.

Comparing the RANS and LES predictions in fig. 7a-d
shows poor agreement to varying levels across all fields. The
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(a) (b)

(c) (d)

FIGURE 7: Typical comparison between time averaged RANS
and LES solutions for LES case 4 (φ = 0.84, Uc = 52 m/s) us-
ing RANS model parameter values suggested by the prior, (a)
ȲCH4 (b) ȲH2O (c) T̄ (d) Ūz. The left half of each figure shows the
RANS result and the right half shows the time averaged LES re-
sult.The solid magenta curves in (a-c) show mean progress vari-
able c̄ = 0.5 contours. The broken magenta curves on LES re-
sults in (a-c) show c̄ = 0.5 contours for fields separated by one
standard deviation from the mean field. Data is plotted on the
comparison mesh

vertical extent of the c̄ = 0.5 contours may be interpreted as a
measure of the flame height. It is clear from fig. 7a-c that the pre-
dicted flame height is shorter in the RANS simulations than the
LES. In addition, the flame brush width is significantly thinner in
the RANS results than in the LES. Both of these characteristics
may be attributed to the choice of the 1-step mechanism in the

Data Cµ C1ε C2ε Cγ Cτ ||∇zJ/J||∞
- 0.09 1.44 1.92 2.13 0.41 -

1 0.078 1.69 1.51 2.13 0.41 0.036

1 0.098 1.35 1.99 1.16 0.59 0.016

1-3 0.099 1.36 1.97 1.19 0.6 0.035

TABLE 2: RANS model parameter values determined from MAP
estimation. Grayed out cells show parameters that were held
fixed at prior values z∗ (eq.12), during cost function minimiza-
tion.

RANS which does not allow for product dissociation. This also
results in a higher burnt gas temperature in the RANS as fig. 7c
shows. The RANS results for species mass fractions in fig. 7a-b
also consistently show thinner flame brushes. Figure 7d shows
that the spatial distribution of (Ūz) spreads more rapidly with in-
creasing downstream distance along the centreline in the RANS
solutions when compared with the LES result. This is consistent
with past studies that have reported similar behaviour in non-
reacting jets [20,22] and is due to the absence of terms capturing
the impact of three dimensional flow in the standard k−ε RANS
model, as discussed earlier. The same effect is reflected here in
our reacting flow simulations using RANS. The inherently three
dimensional nature of our LES computations, implicitly captures
these physics. Results from other cases in tab. 1 resemble those
in fig. 7 and are not shown.

Table 2 lists model parameters obtained using MAP estima-
tion. In each row, grayed out cells show parameters that were
held fixed at their prior values during MAP estimation. We re-
fer to those parameters included in MAP estimation as free pa-
rameters. The first column summarizes the composition of the
training dataset used in each case. Accordingly, the first row lists
parameter values, z∗ (eq. 12), from the prior. The numbers in
the first column in rows 2-4, correspond to LES case numbers
given in tab. 1. Comparing row 1 with those in other rows in
tab. 2, shows that introducing even one training data point sig-
nificantly changes the MAP estimate of some model parameter
values. Rows 2 and 3 show that increasing the number of free
model parameters to include those of the EDC model, in addition
to the k− ε model, results in a significant change in EDC model
parameter values. The change in parameter values is marginal
with inclusion of additional training data, however, as can be
seen by comparing rows 3 and 4 in tab. 2. Overall, compar-
ing parameter values in row 4 with row 1 shows that the EDC
model parameters and the ε-equation source term parameter, C1ε

show the most significant changes from their prior values. The
reduction in C1ε broadly reduces values of ε in the flow solution
which then causes the local eddy viscosity within the framework
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Data Free parameters [det(H)]−1/2 NLE NNLE

- None 32.0 - -

1 k− ε only 1.086 489.4 489.4

1 k− ε , EDC 0.43 380.2 380.2

1-3 k− ε , EDC 0.014 1210.4 403.5

TABLE 3: Parameter uncertainty and negative log evidence
(NLE) of MAP model parameter estimates in tab. 2. NNLE is
the NLE per training data point.

of the k− ε model to increase. The reduction in Cγ and the in-
crease in Cτ implies that the mass fraction of reaction carrying
fine scale structures in the flow reduces while the flow residence
time within these structures increases. Both of these facts di-
minish the time averaged chemical source term value from that
predicted by using parameters from the prior. We will verify that
both these effects result in a broadening of the flame brush later
in this paper

At this level of inference, neither the impact of including
additional training data nor the appropriate choice of free model
parameters for MAP estimation are immediately obvious. The
first of these is addressed by using Laplace’s method to exam-
ine the change in uncertainty estimates of the MAP values. The
second is addressed by examining the change in NLE estimates
(eq. 9) for each case. Table 3 lists uncertainties, negative log ev-
idence (NLE) and NLE per training data point, NNLE for each
of the three training datasets listed in tab. 2. The uncertainty
in each set of MAP estimate model parameters is quantified by
[det(H)]−1/2. This number, up to a constant factor, determines
the volume of the unit standard deviation ellipsoid around the
MAP estimate in parameter space. A first significant reduction
in model parameter uncertainty is obtained by assimilating data,
as comparing values of [det(H)]−1/2 between the first and re-
maining rows in column 3 of tab. 3 shows. A further reduction is
achieved by including EDC model parameters in the estimation
– see rows 2 and 3 in column 3 of tab. 3. Including additional
training data increases the uncertainty in model parameters as
comparing values in rows 3 and 4 in tab 3 shows. This may
just be due to the somewhat higher value of the cost function
gradient for this case from tab. 2 when compared to the single
training point case. This was the best possible value achieved
within the scope of the present study. Using adjoint solutions to
determine the gradient of J(z) can potentially improve the MAP
estimate. Implementing this however, is beyond the scope of the
present study. Nevertheless, the progressive reduction in uncer-
tainty of the MAP estimate relative to the prior, is typical when
using Bayesian inference, as the addition of data results in a read-
justment of prior beliefs about model parameter values.

The fourth column in tab. 3 lists the negative log evidence
(NLE) for each choice of model parameters and data. Note that
a lower value of NLE implies increased probability that the data
is predicted by the choice of the model, characterised in this case
by the choice of free parameters. Comparing NLE values in rows
2 and 3 shows that including EDC parameters reduces the NLE
evidence - suggesting that the choice of five free parameters from
the k− ε and EDC models yields the appropriate model, consis-
tent with what physical intuition would suggest. The higher NLE
in row 4 for the case with three training data points when com-
pared to the case with a single training point in row 3 is simply
a reflection of the increase in the number of training points as
in both of these cases, the free parameters are identical. This is
shown by the marginal change in the value of NNLE in rows 3
and 4 in tab. 3.

We now compare predictions at test point 4 in tab. 1 using
MAP estimate RANS model parameters from row 4 in tab. 2.
Results comparing RANS and LES results for case 4 in tab. 1 are
presented in fig. 8 in exactly the same manner as those shown in
fig. 7 (see appendix A for similar results for other cases in tab. 1).
Comparing the two sets of results shows that the quality of agree-
ment between RANS and LES for temperature and species mass
fraction fields has significantly improved - even at a test case
that wasn’t part of the training data - see fig. 2. The c̄ = 0.5
contours in the RANS solutions now lie well within the band of
uncertainty around the time averaged LES data and show a flame
brush that compares better with the LES as figs. 8a-c show. The
broader flame brush in the RANS results in figs. 8a-c is a con-
sequence of increased turbulent viscosity and smaller time aver-
aged chemical source term values predicted by the MAP estimate
model parameters.

Figure 9a-d shows typical radial profiles at an axial posi-
tion of z/D = 4 from RANS and LES solutions for test case 4
(φ = 0.84, Uc = 52 m/s, see tab. 2). The unit standard deviation
uncertainty band around the LES result (curve) is shown in grey.
Results from RANS solutions using prior (crosses) and MAP es-
timate (filled circles) model parameters from row 4 in tab 2 are
overlaid for comparison. These results are typical and similar
trends are seen for traning cases and test cases 5 and 6 in tab. 1 as
well. Thus, it is clear from fig. 8 and 9 that for temperature and
species mass fraction fields, using MAP parameters, consider-
ably improves the quantitative accuracy of the RANS when com-
pared to results obtained using parameters suggested by the prior
alone. Figure 9d shows that the improvement in the change of jet
spreading rate in the RANS and LES results for Ūz is marginal,
consistent with results in figs. 7d and 8d. These results again
show the importance of additional terms in the k− ε model sug-
gested by Pope [20] and Sarkar and Lakshmanan [21] is essential
to improve the quantitative predicition of the jet spreading rate in
the RANS [22].

9 Copyright © 2023 by ASME



(a) (b)

(c) (d)

FIGURE 8: Typical comparison between time averaged RANS
and LES solutions for LES case 4 (φ = 0.84, Uc = 52 m/s) using
MAP estimate RANS model parameter values, (a) ȲCH4 (b) ȲH2O
(c) T̄ (d) Ūz. In each figure, the left half shows the RANS result
and the right half the time averaged LES result. The solid ma-
genta curves in (a-c) show mean progress variable c̄ = 0.5 con-
tours. The broken magenta curves on LES results in (a-c) show
c̄ = 0.5 contours for fields separated by one standard deviation
from the mean field. Data is plotted on the comparison mesh.

6 CONCLUSIONS
This paper demonstrates the use of Bayesian inference to

assimilate training data from large eddy simulation (LES) into
closure model parameters for Reynolds averaged Navier-Stokes
(RANS) simulations. The configuration chosen for this study is
a turbulent round jet flame at flow Reynolds number, Re ∼ 1500.
Inflow forcing by synthetic turbulence sustains a turbulent flow
ahead of the flame. The design parameters of the problem, up-
stream equivalence ratio and bulk axial flow velocity, are varied
in the range 0.7 − 0.9 and 50 − 70 m/s respectively. The up-
stream reactant temperature is held fixed at Tu = 800 K. LES is

(a) (b)

(c) (d)

FIGURE 9: Typical Radial profiles of flow field quantities at
z/D= 4 from RANS and LES solutions for test case 4 (φ = 0.84,
Uc = 52 m/s), (a) ȲCH4 (b) ȲH2O (c) T (d) Uz. The unit standard de-
viation uncertainty band around the LES is shown in grey. Data
is plotted at comparison mesh points

performed using the explict filtering LES (EFLES) method de-
scribed in Datta et al [9]. Steady RANS computations of the
same configuration are performed in a 2D-axisymmetric config-
uration using the reactingFoam flow solver, as provided, with
openFoam libraries and tools [10]. The k − ε model is used
to close Reynolds stress terms and the eddy dissipation concept
(EDC) model is used to model the time averaged reaction rate.

RANS model parameters are determined using maximum
a posteriori (MAP) estimation. Mathematically, prior belief in
numerical values for RANS model parameters is expressed as
a Gaussian pdf over parameter space with mean parameter val-
ues from previous studies and variance chosen arbitrarily. The
likelihood of the data for a given choice of parameters is con-
structed from the corresponding RANS solution combined with
flow statistics from LES. The most likely model parameter val-
ues are taken to be those that have the maximum posterior proba-
bility. This is determined using Bayes’ theorem by minimizing a
cost function, which is the negative log likelihood of the posterior
probability. The Hessian of this cost function at the MAP esti-
mate provides a leading order approximation to the posterior pdf
around the MAP parameter values using Laplace’s method [3].
This allows quantification of the uncertainty in the MAP esti-
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mate parameter values and also the marginal likelihood that the
LES data is predicted by the RANS model.

Our results show that, for this flow configuration, assimi-
lating RANS model parameters with MAP estimation signifi-
cantly improves agreement between RANS and LES solutions
for the mean species mass fractions and the temperature, even
for cases at design parameters that were not part of the train-
ing data. The absence of terms capturing turbulence effects re-
sulting from three dimensionality of the turbulence field in the
k− ε model equations implemented within reactingFoam results
in increased jet spreading rates in the RANS simulations, when
compared with LES. Including these terms can therefore improve
RANS predictions of the velocity field as well. This is an impor-
tant point to be addressed in future work. Note that the inherently
three dimensional nature of our LES computations captures this
physics.

Model parameter uncertainty estimates show that inclusion
of additional training data and EDC model parameters, in ad-
dition to those of the k − ε model, as free parameters in MAP
estimation, reduces the uncertainty of the MAP estimate. Also,
the increase in marginal likelihood when EDC model parameters
are included in MAP estimation provides evidence that the five
parameter model is the appropriate model that can explain the
data. In summary, all of these results demonstrate the validity of
using MAP estimation as a means of improving the reliability of
RANS predictions using LES for the present flow configuration.
This provides confidence that similar results can be achieved for
flows at higher Re in and in realistic configurations. The MAP
estimation method formulated in this paper is general and can be
easily applied to any LES and RANS solver combination.
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A Appendix
The match between RANS and LES using MAP estimate pa-

rameters is shown in figs. 10-12 for training cases 1-3 in tab. 1.
Corresponding results for testcase 5-6 in tab. 1 are shown in
figs. 13 and 14. Note that MAP estimate parameters yield RANS
solutions that agree well with the LES in all cases. The increased
jet spreading rate is also apparent in the results for Ūz in figs. 10d-
14d. As discussed in the paper, this is due to the absence of ad-
ditional terms accounting for flow three-dimensionality [20, 22].

(a) (b)

(c) (d)

FIGURE 10: Typical comparison between time averaged RANS
and LES solutions for LES case 1 (φ = 0.8, Uc = 65 m/s) using
MAP estimate RANS model parameter values, (a) ȲCH4 (b) ȲH2O
(c) T̄ (d) Ūz. In each figure, the left half shows the RANS result
and the right half the time averaged LES result. The solid ma-
genta curves in (a-c) show mean progress variable c̄ = 0.5 con-
tours. The broken magenta curves on LES results in (a-c) show
c̄ = 0.5 contours for fields separated by one standard deviation
from the mean field. Data is plotted on the comparison mesh.
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