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ABSTRACT
We assimilate the parameters of a low order physics-based

model of a bluff-body-stabilized premixed flame by observing OH
PLIF and PIV images of a 1.1 MW flame. The model is a five
parameter level set (G-equation) solver with a prescribed veloc-
ity field. A Bayesian ensemble of neural networks (BayNNE) is
trained on numerical simulations of the model at 2400 different
parameter combinations. Once trained, the BayNNE observes the
experimental data and outputs the expected values and uncertain-
ties of the parameters of the model that best fits the experimental
data. Using this model, we extrapolate the heat release rate field
in physical space beyond the observed window in the experiments,
and in parameter space to smaller perturbation amplitudes. We
then convert the periodic heat release rate field into a distributed
𝑛 − 𝜏 model, which we enter into a thermoacoustic Helmholtz
solver. We find that the thermoacoustic eigenvalue drift is small
but measurable, is stabilizing, and does not vary significantly
during the experimental run or with the velocity amplitude. This
is primarily because the time delay field 𝜏, which is determined
by the convection speed, is similar for all cases. This is consistent
with the experimental images, which exhibit intermittent bouts of
thermoacoustic oscillations that die away. Although this paper’s
conclusions for thermoacoustic behaviour are unsurprising, the
method it describes is a potentially cheap way to combine sparse
experimental measurements with copious low order simulations.
Keywords: Thermoacoustics, Neural Networks, Machine
Learning, Data Assimilation, Flame Transfer Function

1. INTRODUCTION
The modelling, prediction, and control of thermoacoustic

instability is a persistent challenge in jet and rocket engine de-
sign. This is because the thermoacoustic behaviour of these
engines is exceedingly sensitive to small changes in design or
operating point [1]. Any errors in thermoacoustic models can
therefore have a strong influence on the predicted thermoacoustic
behaviour. Choosing a good model is challenging because high
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order models can be too expensive, while low order models can be
too inaccurate. This is particularly challenging when modelling
industrial thermoacoustic systems that contain turbulent flames.

Recently, advances in experimental diagnostics and in com-
putational power have led to vast quantities of data becoming
available. The question is how best to use this data. All ap-
proaches, whether data-driven or physics-based, involve assim-
ilating data into models. In many data-driven approaches, the
model is a neural network (NN) containing millions of param-
eters. The NN is a versatile model that can model anything,
without knowledge of the physics. Its parameters are found by
minimizing the discrepancy between the model prediction and
the data, meaning that it learns to interpolate between the data
it has already seen. In physics-based approaches, on the other
hand, the model is a qualitatively-accurate model of the under-
lying physics, containing parameters that are learned from the
data. When performed rigorously [2], the user specifies the prior
expected values and uncertainties in the parameters before as-
similating the data, assigns some uncertainty to the data, and
then calculates the posterior expected values and uncertainties of
the parameters. For a field such as thermoacoustics, which has
been accumulating physics-based knowledge for over a century,
it seems absurd to discard this knowledge in favour of a purely
data-driven approach involving NNs. Nevertheless, it is worth
investigating the potential benefits that the data-driven approach,
and associated tools, can bring to the field.

In situations in which the physics is unknown or un-
modellable, pure data-driven approaches work well. For example,
a NN can be trained to recognize the decay rate of thermoacous-
tic oscillations in a tube containing a turbulent flame, given only
the noise of the undisturbed turbulent flame [3]. In this case,
the physics relating the noise to the flame shape, and then the
flame shape to the thermoacoustic behaviour, would be difficult
to model. Instead, the NN simply learns the relationship between
noise and thermoacoustic behaviour from data, providing a useful
prognosis tool. This tool has been extended to full-scale aircraft
engines [4] and to laboratory-scale rocket engines [5]. In each
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case, it gives around 0.5 seconds warning of impending ther-
moacoustic instability, which would be sufficient to take evasive
action.

In situations in which the physics is known and can be mod-
elled, a NN contains too many unknown parameters to be an
appropriate tool. It is more efficient and more informative to
propose qualitatively-accurate physics-based models and to as-
similate their parameters from experimental data using Bayesian
inference [6]. When performed rigorously, the posterior parame-
ter uncertainties are also assimilated, which allows the researcher
to compare physics-based models against each other, to penalize
models with too many parameters, and to discover which candi-
date model is most likely to explain a given set of data. Unlike
NNs, these physics-based models can extrapolate into physical
space and parameter space that has not been observed, as long as
the physics remains unchanged and the models remain valid.

This paper follows the physics-based approach but does not
use the conventional Bayesian method, a Kalman filter [7], to as-
similate the model parameter values and their uncertainties. In-
stead it uses a Bayesian ensemble of neural networks (BayNNE)
to assimilate the model parameters and their uncertainties. This
combines the attractive features of physics-based approaches,
such as extrapolatability and interpretability, with the attractive
features of NNs, such as speed and ease of use. We focus mainly
on the flame behaviour, which is usually the hardest part of a ther-
moacoustic system to model. We extrapolate the flame behaviour
in physical and parameter space and then investigate how this
influences the predicted thermoacoustic behaviour of the system.

1.1 The thermoacoustic mechanism and flame modelling
Thermoacoustic instabilities grow when heat release rate os-

cillations and pressure oscillations are sufficiently in phase [8].
Heat release rate fluctuations are caused by flame surface area
fluctuations, which in turn are caused by velocity perturbations
and flame dynamics [9–13]. Any physics-based model of a gas-
turbine flame must therefore contain the flame’s response to ve-
locity perturbations. In addition, equivalence ratio perturbations
must also be included for partially-premixed or spray flames.

In the simplest physics-based flame model, the heat release
rate fluctuation is a linear multiple, 𝑛, of the velocity perturbation
at the base of the flame some time 𝜏 earlier. This is known as
the lumped 𝑛 − 𝜏 model [14]. This model is too simple for our
purposes because it does not simulate the flame dynamics. In
this paper we model the flame as the zero contour (or level-set) of
a continuous function that advects with the flow and propagates
normal to the zero contour. This is known as the 𝐺-equation
model [15] and it allows the most influential flame dynamics to
be simulated cheaply. These fluctuations can then be expressed
as a distributed 𝑛− 𝜏 model [16], in which 𝑛 and 𝜏 have the same
meaning as before, but are distributed in space.

1.2 Bayesian deep learning
In this paper, the parameters of the flame model are assimi-

lated from experimental data. The experimental data comes from
high frequency OH planar laser induced fluorescence (OH PLIF)
measurements of the turbulent flame in a 1.1 MW version of
the Volvo combustor rig [17]. Previously, we used the ensemble

FIGURE 1: DIAGRAM OF THE VOLVO COMBUSTOR AND G-
EQUATION MODEL OF THE FLAME. THE FLAME BURNS PRE-
MIXED AIR AND PROPANE, STABILIZED ON A TRIANGULAR
BLUFF BODY. THE FLAME FRONT IS REPRESENTED BY THE G =
0 CONTOUR OF A CONTINUOUS SCALAR FIELD G (x , y , t).

Kalman filter [18] (EnKF) to assimilate data from a bunsen flame
into this 𝐺-equation model [19, 20]. The EnKF infers the pa-
rameters of the 𝐺-equation model by combining model forecasts
with experimental measurements within a Bayesian framework.
However, the computational requirements of the EnKF make real-
time Bayesian inference unfeasible when measurements are taken
at high frequency. Furthermore, we have found that the method
sometimes fails to infer parameters when they vary quickly in
time, and suffers from numerical instability when the measure-
ments are noisy or the behaviour changes abruptly. For these
reasons the Kalman filter is not suitable for assimilation of these
experimental images.

Instead, we use an ensemble of Bayesian neural networks.
Bayesian deep learning refers to the use of deep learning algo-
rithms, such as deep artificial neural networks (NNs), for Bayesian
inference [21]. Bayesian NNs [2] replace the point estimates of
each of the NN’s weights and biases with Gaussian probability
distributions, with means and variances learned during training.
The distribution of every weight and bias in the NN can be used
to infer the outputs from the inputs. For example the parame-
ters of a model can be inferred from experimental measurements.
Bayesian NNs of practical size are, however, too expensive to
train [21]. More recently, ensembles of deep NNs have been
used to perform approximate Bayesian inference [22–24]. The
approximation improves as the width of the NN’s hidden layers
increases. These Bayesian NN ensembles (BayNNEs) learn the
mean and variance of the posterior distribution of the outputs
given the inputs. When multiple outputs are to be inferred, het-
eroscedastic BayNNEs learn the means and variances of each
output, without assuming a common variance for all outputs.
This study uses heteroscedastic BayNNEs to infer the parameters
of the 𝐺-equation model of a bluff-body stabilised flame given
experimental observations [25, 26].

2. EXPERIMENTAL DATA AND IMAGE PROCESSING
The flame images are from experiments performed on a ver-

sion of the Volvo combustor [17, 28, 29] shown schematically in
Figure 1. Premixed air and propane flow into the combustor and
are burnt by a flame stabilized on a triangular bluff body with
side length 𝐷 = 3.8 cm. The heat release rate is 1.1 MW. As the
air-fuel mixture flows through the combustor, vortices are shed
periodically from the bluff body. These vortices cause wrinkling
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FIGURE 2: POWER SPECTRAL DENSITY OF THE SIGNAL FROM A
HIGH-FREQUENCY PRESSURE TRANSDUCER IN THE RIG, FROM
REF. [27].

and cusping of the flame front. In addition to this motion, a large
scale varicose mode exists intermittently with a period of 83 Hz
(Fig. 2), which is near the fundamental acoustic frequency of the
combustor. We wish to assimilate data into a model for this mode.
8000 images of the flame such as those in Fig. 3(a) are recorded
at 10kHz using OH planar laser induced fluorescence (OH PLIF)
through a window 3𝐷 tall and 3.4𝐷 wide. Simultaneous PIV is
also recorded. In this paper we examine an experimental run at
a single operating point. We have equivalent images from one
other operating point, in which the varicose mode is not present.
Our model is designed to assimilate data from the varicose mode,
so the data from the other operating point was not relevant.

The images are processed to find the position 𝑦 = 𝑓 (𝑥) of the
flame front by thresholding and interpolating the magnitude of
the OH gradient vector at each point, as shown in Fig. 3(b). The
vectors of positions y are smoothed using splines with 10 knots.
Ten position vectors are appended to form a column vector, z,
representing a sequence of 10 flame front positions. We refer to
column vectors z as observation vectors.

3. ASSIMILATION INTO A FLAME MODEL
3.1 The flame model

The flame front is modelled as a thin boundary between
unburnt and burnt gases (Fig. 1). In this model, the flame travels
normal to itself into the unburnt gases with laminar flame speed
𝑠𝐿 , which depends on the gas composition. The velocity of the
burnt gases does not affect the flame kinematics. The unburnt
and burnt gases are assumed to travel with velocity u(𝑥, 𝑦, 𝑡).
Under these assumptions, the flame front is modelled by the
𝐺 (𝑥, 𝑦, 𝑡) = 0 contour (or level-set) of a continuous scalar field
𝐺, whose motion is governed by the 𝐺-equation:

𝜕𝐺

𝜕𝑡
+ u · ∇𝐺 = 𝑠𝐿 |∇𝐺 |. (1)

The flow velocity field u is modelled as the superposition of
a uniform and constant base flow, 𝑈, and a continuity-obeying

FIGURE 3: (A) PLOTS OF OH PLANAR LASER INDUCED FLUO-
RESCENCE (OH PLIF) INTENSITY IMAGES OF THE FLAME TAKEN
THROUGH THE OBSERVATION WINDOW. (B) PLOTS OF THE MAG-
NITUDE OF THE GRADIENT VECTOR OF OH INTENSITY, INDICAT-
ING THE FLAME FRONT [17].

velocity perturbation, 𝑢′ (𝑥, 𝑡) and 𝑣′ (𝑥, 𝑦, 𝑡):

u(𝑥, 𝑦, 𝑡)
𝑈

= (1 + 𝑢′ (𝑥, 𝑡)) i + 𝑣′ (𝑥, 𝑦, 𝑡)j, (2)

𝑢′ (𝑥, 𝑡) = Y
(︂ 𝑥
𝐷

)︂𝛾
sin
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(4)

where 𝑈 is a characteristic speed, Y is a non-dimensional ampli-
tude, St is the Strouhal number of the flame with characteristic
length 𝐷, excitation frequency 𝑓 , and nominal aspect ratio 𝛽:
St = 2𝜋 𝑓 𝛽𝐷/𝑈, and 𝐾 is the ratio of the characteristic speed 𝑈
to the perturbation phase speed, 𝑣𝑝 . The parameter 𝛾 is intro-
duced to the flame perturbation model to allow for the horizontal
velocity perturbations to increase in size with distance from the
flame holder, which is the qualitative behaviour observed in the
experiment. This has proven to be a versatile flame front model
in several previous studies, despite having only a few parame-
ters [30]. To make the 𝐺-equation model quantitatively accurate,
the parameters 𝐾, Y, 𝛾, St and 𝛽 must be tuned to fit an observed
flame shape.

3.2 The library of simulated flame fronts
For the simulations we use LSGEN2D [31], which is a level-

set solver that iterates the 𝐺 field of the 𝐺-equation model for
known parameters 𝐾, Y, 𝛾, St and 𝛽. In this study, the 𝐺 field
is iterated forward in time for a duration of 5 periods, where
the period is 1/ 𝑓 . This allows any transient flame behaviour to
decay. Then the 𝐺 field is iterated for a further period. The
value of the 𝐺 field at 𝑁𝑇 = 200 equally spaced time steps
within this period is recorded: {𝐺1, 𝐺2, . . . , 𝐺𝑁𝑇

}. For each 𝐺
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TABLE 1: PARAMETER RANGES USED TO GENERATE THE SYN-
THETIC FLAME FRONT LIBRARY.

Parameter Range Description

𝐾 0.5 - 2 Ratio𝑈/𝑣𝑝
Y 0 - 0.5 Perturbation amplitude
𝛾 0 - 3 Perturbation growth exponent
St 5 - 30 Strouhal number
𝛽 4 - 8 Flame aspect ratio

field in the sequence {𝐺𝑖}, the flame edge 𝑦 = 𝑓 (𝑥) is extracted
from the 𝐺 = 0 contour for all 𝑥 in the range of the experiment
observation window. The flame edge 𝑦 coordinates are recorded
in a column vector y𝑖 . The resulting sequence {y1, y2, . . . , y𝑁𝑇

}
represents the flame edge position at 𝑁𝑇 equally spaced time steps
in the period. The frame rate of this sequence is 𝑁𝑇/𝑇 which is
not, in general, equal to the frame rate of the experimental data
( 𝑓𝑠 = 104 Hz). To create a sequence of 10 simulated flame edges
with the same frame rate as the experimental data starting from
a time step 𝑡1, we calculate the ratio Δ = 𝑁𝑇 𝑓 / 𝑓𝑠 and select the
sequence {y𝑡1 , y𝑡1+Δ, . . . , y𝑡1+9Δ}. The vectors in this sequence
are appended to make a column vector z. This is repeated for
all 𝑁𝑇 of the starting time steps 𝑡1, 𝑡2 . . . 𝑡𝑁𝑇

, and for 𝑃 = 2400
combinations of parameters sampled from the ranges shown in
Table 1. The result is a library of 𝑃𝑁𝑇 = 4.8 × 105 observation -
parameter pairs.

3.3 The heteroscedastic Bayesian neural network
ensembles
The posterior probability distribution 𝑝(p|z) of the 𝐺-

equation parameters p, given the observations z is assumed to
be a multivariate Gaussian with mean vector 𝝁(z) and diagonal
covariance matrix 𝚺(z) = diag(𝝈2 (z)). An ensemble of 𝑀 neu-
ral networks are trained on the simulated flame front library to
predict the mean and variance vectors, 𝝁(z) and 𝝈2 (z). Each
neural network in the ensemble produces estimates 𝝁𝑗 (z𝑖) and
𝝈2
𝑗
(z𝑖) for each observation vector z𝑖 . These estimates are com-

bined following Ref. [32] as:

𝝁(z𝑖) =
1
𝑀

∑︂
𝑗

𝝁𝑗 (z𝑖), (5)

𝝈2 (z𝑖) =
1
𝑀

∑︂
𝑗

𝝈2
𝑗 (z𝑖) +

1
𝑀

∑︂
𝑗

𝝁2
𝑗 (z𝑖) − 𝝁2 (z𝑖), (6)

Each neural network comprises 4 fully connected layers 600 hid-
den units wide, and two output layers (one for the mean vector,
one for the variance vector) each 6 units wide. ReLU activations
are used for the hidden layers, a sigmoid activation is used for the
output layer for the mean and an exponential activation is used
for the variance layer, to ensure positivity. The architecture of
one such neural network is shown in Fig. 4.

The weights 𝜽𝑗 of each neural network are initialised by
sampling from Gaussian prior distributions with means 0 and
covariance matrices 𝚺𝑝𝑟𝑖𝑜𝑟 according to He normalisation[33].
During training, the weights are anchored to their initial values

FIGURE 4: ARCHITECTURE OF EACH NEURAL NETWORK IN THE
ENSEMBLE OF 20. THE INPUT AND HIDDEN LAYERS HAVE 600
UNITS EACH, WHILE EACH OUTPUT LAYER HAS 6 UNITS EACH.
ALL LAYERS ARE FULLY CONNECTED (FC). RECTIFIED LINEAR
UNIT (RELU) ACTIVATION FUNCTIONS ARE USED FOR THE HID-
DEN LAYERS AND SIGMOID AND EXPONENTIAL (EXP) ACTIVA-
TION FUNCTIONS ARE USED FOR THE MEAN AND VARIANCE
OUTPUT LAYERS RESPECTIVELY.

𝜽𝑗 ,𝑎𝑛𝑐. The loss function used for training is:

L𝑗 =
(︁
𝝁𝑗 (z) − p

)︁𝑇 𝚺𝑗 (z)−1 (︁𝝁𝑗 (z) − p
)︁
+ log

(︁
|𝚺𝑗 (z) |

)︁
+
(︁
𝜽𝑗 − 𝜽𝑎𝑛𝑐, 𝑗

)︁𝑇 𝚺−1
𝑝𝑟𝑖𝑜𝑟

(︁
𝜽𝑗 − 𝜽𝑎𝑛𝑐, 𝑗

)︁
.

(7)

This is constructed by adding a regularization term to the weights
(third term of L𝑗 ) to the negative log-likelihood of the param-
eter predictions (first two terms of L𝑗 ). Training the ensemble
with this loss function is known as Bayesian ensembling with
maximum a-posteriori (MAP) sampling. It is a general method
which can be used to infer a Bayesian posterior to uncorrelated
target variables. The loss function encourages the BayNNE to
learn both accurate parameter predictions and their uncertainties,
which is a sensible objective in applications where aleatoric and
epistemic uncertainties arise.

An ensemble of size 𝑀 = 20 is trained for 100 epochs on a
Tesla P100 GPU on Google Colab1. This takes approximately 3
hours. Once converged, the ensemble is evaluated on the obser-
vations, which takes milliseconds.

3.4 Parameter estimation from the BayNNE and modelled
flame behaviour
Each flame front position vector appears in 10 consecutive

observation vectors. There are therefore 10 sets of ensemble pa-
rameter predictions for each timestep. For each timestep, the re-
simulated flame is a weighted average of the flames re-simulated
with the 10 sets of parameters. Greater weight is given to flames
re-simulated using parameters predicted from an observation vec-
tor in which the flame front position vector appears in the middle
of the observation vector.

We assimilate the data from all 8000 timesteps. At each
timestep, the BayNNE recognises the parameters (𝐾 , Y, 𝛾, St,
𝛽) of the simulations that best match this experimental data and

1Google Colaboratory (“Colab") is a Jupyter notebook environment for interac-
tive development, https://colab.research.google.com/.
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FIGURE 5: EXPERIMENTAL FLAME IMAGES (TOP-LEFT QUAD-
RANT OF EACH IMAGE) AND LEVEL-SET MODEL PREDICTIONS
(REMAINDER OF IMAGE) AT FOUR TIMESTEPS WITHIN A SE-
QUENCE OF 430 TIMESTEPS. THE GRAPHS SHOW THE MEANS
AND ± 2 STANDARD DEVIATIONS OF THE FIVE PARAMETERS OF
THEG-EQUATION SIMULATION, AFTER ASSIMILATION FROM THE
EXPERIMENTAL DATA. THE LEVEL-SET MODEL PREDICTIONS
USE THESE ASSIMILATED VALUES TO SIMULATE THE FLAME
DOWNSTREAM, BEYOND THE OBSERVATION WINDOW. THE IN-
FERRED PARAMETER VALUES ARE LISTED IN TABLE 2.

also outputs the uncertainty in those parameters, in the form of
a standard deviation. The expected values and two standard de-
viations are shown in Fig. 5 for 430 of the 8000 timesteps. The
BayNNE is certain about some parameters, such as 𝐾 , Y, 𝛾, and
𝛽, but, when the flame behaviour is far from periodic, is uncer-
tain about St. The parameter values tend to remain approximately
constant for many timesteps and then change abruptly. This con-
curs with a visual inspection of the experimental data which also
exhibits periods of similar behaviour interspersed with moments
of abrupt change. The BayNNE is able to assimilate the data
reliably through these abrupt changes, while the EnKF[20] is not.

The varicose mode that we assimilate is intermittent so is
present for some blocks of timesteps but not others. In Fig. 5 we
show the assimilated parameters from 430 of the 8000 timesteps
and highlight four timesteps in which the varicose mode can be
observed particularly well. The top-left quadrant of the four flame
images in Fig. 5 shows the experimental flame position (Fig. 3)
at that timestep in the experimental run.

At each stage, parameter samples from the posterior distri-
bution inferred from the BayNNE are entered into 𝐺-equation
simulations to create a distribution of flame positions and heat
release rate fluctuations in space and time. This converts the un-
certainty in the flame positions into a distributed heat release rate
field. The heat release rate fields match the flame observations
well within the observed window, and also extrapolate beyond the
window. We emphasise that this extrapolation is achieved using
the physics-based flame front model, and not using the BayNNE;

TABLE 2: PARAMETER VALUES AND UNCERTAINTIES INFERRED
BY THE BAYNNES AT FOUR TIMESTEPS IN FIG./REFFIG:RESULTS.

Par. 𝑡 = 48 𝑡 = 108 𝑡 = 216 𝑡 = 312

𝐾 0.95 ± 0.08 0.72 ± 0.08 0.69 ± 0.02 0.93 ± 0.01
Y 0.13 ± 0.01 0.10 ± 0.00 0.31 ± 0.00 0.18 ± 0.00
𝛾 1.12 ± 0.14 1.01 ± 0.11 1.58 ± 0.02 1.15 ± 0.01
St 21.2 ± 8.4 16.4 ± 5.3 25.7 ± 4.9 14.3 ± 1.9
𝛽 7.93 ± 0.02 7.69 ± 0.12 7.74 ± 0.05 6.71 ± 0.12

TABLE 3: INTENSITY, η, OF THE GLOBAL TRANSFER FUNCTION
BETWEEN VELOCITY FLUCTUATIONS AND HEAT RELEASE RATE
FLUCTUATIONS (IN JOULES/METRE) [34], AT FOUR DIFFERENT
TIMESTEPS AND FOUR DIFFERENT AMPLITUDES.

Amplitude 𝑡 = 48 𝑡 = 108 𝑡 = 216 𝑡 = 312

Y/4 160.7 168.8 258.2 232.1
Y/2 163.6 173.3 265.1 240.0
3Y/4 165.6 174.1 270.1 246.6
Y 167.8 175.2 274.2 252.4

the BayNNE has been used only to identify the parameters from
the images in the window.

The parameters are inferred from large amplitude flame os-
cillations but, in later sections of this paper, we investigate how
the flame would behave at lower amplitudes. We therefore repeat
the above calculations at the same parameter values, but with
smaller values of the velocity field amplitude Y (Tab. 1). These
amplitudes are Y/4, Y/2, and 3Y/4, where Y is the amplitude as-
similated from the experimental data. This is an extrapolation of
the physics-based G-equation model rather than an extrapolation
of the BayNNEs.

3.5 The flame behaviour expressed as a distributed n − τ
model
The above analysis gives the local heat release rate field,

𝑞(x, 𝑡), and the local velocity field, 𝑢(x, 𝑡), over one cycle at a
known frequency, 𝜔, where x = (𝑥, 𝑦). At each pixel, we take
the Fourier transform of 𝑞 and 𝑢 at 𝜔, for example �̂�(x, 𝜔) =∫
𝑞(x, 𝑡) exp(i𝜔𝑡)d𝑡, and convert this to the heat release rate per

unit volume by dividing by the volume corresponding to each
pixel. The 𝑛 and 𝜏 fields are calculated as follows:

𝑛(x) =
|︁|︁|︁|︁ �̂�(x, 𝜔)𝐼

|︁|︁|︁|︁ , 𝜙(x) = ∠(︃ �̂�(x, 𝜔)𝐼

)︃
, (8)

where 𝐼 =
∫
Ω
𝑤(x) |�̂�(x, 𝜔) |𝑑x and𝑤(x) is the measurement zone:

𝑤(𝑥, 𝑦) = exp
(︂
−𝑎𝑟 (𝑥 − 𝑥0)2 − 𝑎𝑟 ( |𝑦 | − 𝑦0)2)

)︂
, (9)

where 𝑎𝑟 = 6200, and (𝑥0, 𝑦0) = (𝐷/2, 𝐷) where 𝐷 is the bluff-
body side length. This measurement zone must be the same in
the thermoacoustic model as it is in the heat release model. The
phase, 𝜙(x), of 𝑞 is wrapped between ±𝜋 and is unwrapped with
the algorithm in Ref. [35]. The phase is then divided by 𝜔 to
give the spatially-distributed time delay 𝜏(x). Finally, the 𝑛 field
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FIGURE 6: (A): RE-SIMULATED FLAME SHAPE AT t = 48. (B) AND
(C): n AND τ FIELDS CALCULATED FROM THE RE-SIMULATED
FLAME SHAPE AT t = 48. THE CENTRE (x0, y0) OF THE MEA-
SUREMENT REGION w (x , y ) IS ALSO SHOWN. PART OF THE
FLAME IS UPSTREAM OF THE MEASUREMENT POINT, WHICH
LEADS TO A NEGATIVE TIME DELAY.

is scaled to a field that integrates to 1 multiplied by a scalar, [, in
units of 𝐽/𝑚, in order to be consistent with equation [4] of Ref.
[34].

The values of [ are shown in Tab. 3 at the four highlighted
timesteps in Fig. 5 reproduced at the four different amplitudes Y.
The corresponding heat release rate distributions and time delay
distributions are shown in figures 6 to 11. In the next section,
these distributed 𝑛 − 𝜏 models are included in a thermoacoustic
Helmholtz solver to model the thermoacoustic behaviour a system
containing these flames.

4. PREDICTED THERMOACOUSTIC BEHAVIOUR

4.1 Themoacoustic Helmholtz solver

The thermoacoustic Helmholtz equations solved in this paper
are equations (3–5) in Ref. [34], which are converted to the fre-
quency domain and expressed as a nonlinear eigenvalue problem
for the complex angular frequency, 𝑠. The unsteady behaviour
of the flame is modelled using the local formulation of the 𝑛 − 𝜏
model in section 3.5 with the same measurement region. This is
the approach taken in [16, 34, 36]. The temperature distribution

FIGURE 7: AS FOR FIG. 6 WITH t = 108.

FIGURE 8: AS FOR FIG. 6 WITH t = 216.
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FIGURE 9: AS FOR FIG. 6 WITH t = 312.

FIGURE 10: DISTRIBUTIONS OF h (x) AT FOUR DIFFERENT TIME
STEPS t AND AT FOUR AMPLITUDES: ε/4, ε/2, 3ε/4 AND ε. THE
VALUES OF η ARE ALSO DISPLAYED FOR EACH TIME STEP AND
AMPLITUDE.

FIGURE 11: DISTRIBUTIONS OF τ (x) AT THE SAME CONDITIONS
AS IN FIG. 10.

in the combustor is modelled by the locally parabolic profile:

𝑇 (𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑇𝑎𝑚𝑏 +

𝑇𝑝𝑒𝑎𝑘

1 +
|︁|︁|︁|︁ 𝑦

𝑘1 (𝑚1𝑥 + 𝑛1)

|︁|︁|︁|︁2𝑘2 (𝑚2𝑥+𝑛2 )
, if 𝑥 ≥ 𝑥𝑓

𝑇𝑎𝑚𝑏, otherwise
(10)

with parameters 𝑇𝑎𝑚𝑏 = 300 K, 𝑇𝑝𝑒𝑎𝑘 = 1700 K, 𝑘1 = 0.01905,
𝑘2 = 10, 𝑚1 = 3.72, 𝑚2 = −1.96, 𝑛1 = −2.21, 𝑛2 = 2.53.
The local speed of sound is taken as 𝑐(𝑥, 𝑦) =

√︁
𝛾𝑅𝑇 (𝑥, 𝑦) with

𝛾 = 1.4 and is shown in Fig. 12. The mean density field 𝜌(𝑥, 𝑦)
is computed from the ideal gas law, 𝑃𝑎𝑚𝑏 = 𝜌(𝑥, 𝑦)𝑅𝑇 (𝑥, 𝑦).
All the boundaries are assumed to be sound-hard (Neumann),
apart from the outlet boundary (right-end), where the sound-soft
(Dirichlet) boundary condition is imposed.

4.2 Discretization and solution method
The geometric parameters of the domain are taken from the

experimental rig in Ref. [27]. The computational grid is gen-
erated by Gmsh [37] using Delaunay triangulation. The compu-
tational grid consists of 183,222 cells for this two-dimensional
planar calculation. The Finite element modelling is implemented
in the open-source platform DOLFINx[38] using P1 Galerkin el-
ements [36]. The weak forms are defined using the UFL package
[39]. All the matrices are assembled within DOLFINx apart from
the active flame matrix. This matrix is implemented using the
PETSc package[40]. The EPS solver in the SLEPc package[41]
is used to determine the nonlinear quadratic eigenvalue problem,
by converting it into a linear eigenvalue problem. The shift-
and-invert spectral transformation is exploited to enhance the
convergence of the eigenvalue to the initial guess. Fixed point

7 Copyright © 2023 by ASME



FIGURE 12: DISTRIBUTIONS OF THE SPEED OF SOUND c (x , y ) IN
THE THERMOACOUSTIC CALCULATION

FIGURE 13: REAL (TOP) AND IMAGINARY (BOTTOM) COMPO-
NENTS OF THE ACOUSTIC PRESSURE EIGENFUNCTIONS OF THE
1ST MODE FOR THE FLAME AT t = 310 AND AMPLITUDE ϵ0. THE
EIGENFUNCTION IS NORMALIZED SUCH THAT

∫

p2dx = 1.

iteration with relaxation is implemented in order to converge to
the eigenvalue[16].

4.3 Thermoacoustic eigenmodes
Fig 13 shows typical thermoacoustic eigenfunctions for the

first thermoacoustic mode. This has the same structure as the
natural modes observed experimentally in a similar configuration
by [27]. The eigenfunctions at other operating points are nearly
identical. Figure 14 shows the first pure acoustic eigenmode (red
square) and the thermoacoustic eigenmodes (grey) at the four am-
plitudes and four timesteps in table 3. The grey symbols deviate
from the red square, showing that the thermoacoustic effect is
active. At the points examined in this paper, the thermoacoustic
effect stabilizes the mode and shifts the frequency slightly.

4.4 Physical interpretation of the thermoacoustic behaviour
The calculations with the Hemholtz solver show that the ther-

moacoustic frequency and growth rate are only slightly affected
by the amplitude of oscillation and the timestep. Table 3 and
Figs. 10 to 11 show how [ and the 𝑛 and 𝜏 fields vary with the
oscillation amplitude and timestep. In this section, we explain
the thermoacoustic behaviour with reference to the physics-based
heat release rate model.

At a given amplitude, the 𝑛 field, which describes the shape
swept out by the oscillating flame, and [, which describes the
global intensity of heat release rate fluctuations, depend signifi-
cantly on the timestep. This is to be expected because 𝑛 and [
were assimilated from different points in the experimental run,
lead to different parameters in LSGEN, and therefore lead to dif-
ferent fluctuating heat release rate fields. At a given timestep,
𝑛 becomes narrower as the amplitude 𝜖 reduces, but retains two
high amplitude regions: one at the outer edge (the top edge in
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FIGURE 14: THE EIGENVALUES FOR THE 1ST MODE AT FOUR
TIMESTEPS AND AMPLITUDES. THE RED SQUARES SHOW THE
EIGENVALUE IN THE ABSENCE OF THE THERMOACOUSTIC EF-
FECT. THE GREY CIRCLES SHOW THE EIGENVALUE AT THE FOUR
VALUES OF ε IN TABLE 3. THE LIGHTEST GREY CORRESPONDS
TO ϵ0/4 AND THE DARKEST TO ϵ0.

Fig. 10) and one at the inner edge (the bottom edge in Fig. 10).
On the other hand, [ increases only slightly with amplitude. This
shows that, once the shape of the flame envelope 𝑛 has been fixed,
the amplitude of the global fluctuating heat release rate depends
only slightly on the amplitude of oscillation. This is the expected
behaviour because there are two high amplitude regions of 𝑛 and,
once they have been created and separated, the global fluctuating
heat release rate [ does not depend much on how far apart they
are.

The time delay field, 𝜏, becomes narrower as the amplitude
reduces and has the same envelope as the 𝑛 field. The influential
region of the 𝜏 field is simply the region in which 𝑛 is large,
which is the outer edge of the envelope of 𝑛. In this region, the
value of 𝜏 at a given 𝑥-position depends very little on amplitude
and only slightly on timestep. This is because 𝜏 is determined by
the convection speed, 𝐾 . The small dependence on amplitude is
expected because the convection speed of waves down the flame
𝑈/𝐾 is not affected at all by the amplitude of oscillation, 𝜖 . The
dependence on timestep is also expected to be small because the
convection speed is similar at each timestep.

We expect the shape of 𝑛 to have little influence on the ther-
moacoustic behaviour because this behaviour is determined by the
integral of 𝑛 multiplied by 𝑝 over an acoustic wave, and 𝑝 has a
long wavelength. On the other hand, 𝜏/𝑇 typically ranges from 0
to 4.5 in the region in which 𝑛 has high amplitude. Small changes
in 𝜏 would therefore cause big changes in the phase between 𝑞
and 𝑝, and therefore big changes in the thermoacoustic growth
rate, as described in [1]. However, 𝜏(𝑥) does not change with
amplitude or timestep because it is determined by the convection
speed, which is the same through the experimental run. The ther-
moacoustic behaviour is therefore similar at all four timesteps and
all four amplitudes.

8 Copyright © 2023 by ASME



5. CONCLUSIONS
In this paper we assimilate experimental data from a bluff-

body-stabilized premixed flame into a physics-based G-equation
flame model by finding the parameters of the model that best fit the
data. The parameters are recognised using a Bayesian ensemble
of Neural Networks (BayNNE) that is trained on 2400 G-equation
simulations. The training process is computationally expensive
but the assimilation process is cheap and could be performed in
real time alongside the experiments. This approach combines the
attractive features of physics-based approaches, such as extrapo-
latability and interpretability, with the attractive features of NNs,
such as speed and ease of use. The parameters are assimilated
from observations of just the upstream portion of the flame. With
the assimilated parameters, the heat release rate is extrapolated
everywhere in space over a cycle, using the G-equation flame
model. This is repeated at different timesteps and is also extrap-
olated to lower amplitudes. This extrapolation in physical space
and parameter space is achieved with the physics-based model,
not with the BayNNE.

The heat release rate fields over a cycle are then converted
to a distributed 𝑛 − 𝜏 model. This is entered into a thermoa-
coustic Helmholtz solver in order to calculate the frequency and
growth rate of thermoacoustic oscillations, given the combus-
tor geometry, temperature, and 𝑛 − 𝜏 models. We find that the
thermoacoustic behaviour is similar for all timesteps and all am-
plitudes. This result is not surprising when interpreted through
the physics-based model: Once the flame starts to oscillate, there
are two high amplitude regions in the 𝑛 field. The time delay,
𝜏, in these high amplitude regions could have a strong influence
on the thermoacoustic behaviour because 𝜏 is, in places, several
multiples of the acoustic period, 𝑇 [1]. The value of 𝜏 in these
high amplitude regions is, however, similar at all timesteps and
amplitudes. This is because 𝜏 is determined by the perturba-
tion convection speed, which is the same at all timesteps and
amplitudes.

The experiment exhibits intermittent bouts of thermoacoustic
oscillations around the fundamental frequency, which is consis-
tent with a lightly-damped oscillator being forced by noise. These
results are consistent with the thermoacoustic model predictions,
which were based on the flame behaviour assimilated while the
system was oscillating. The data comes from a single experimen-
tal run so it is difficult to draw any further conclusions about the
thermoacoustic behaviour other than that the experimental data
and the model behaviour are consistent with each other.

Nevertheless, the assimilation process itself has proven to be
useful. During moments of intermittent oscillation, the BayNNE
can successfully identify the parameters of a physics-based model
of the flame that matches the data. Because the model is physics-
based, it can extrapolate in physical space (i.e. beyond the ob-
servation window) and in parameter space (in this case to lower
amplitudes) to obtain distributed heat release rate models that can
be used successfully in a thermoacoustic model.

As increasingly large quantities of experimental data become
available, we need to extract useful information without becom-
ing overwhelmed. Assimilation into physics-based models, as
performed here, is attractive because the models are physically-
interpretable and extrapolatable. Firstly, this provides a cheap

way to store CFD data - e.g. the parameters of the most relevant
CFD solution for a given experiment can be extracted cheaply,
and the CFD solution then re-calculated. Secondly, this shows
how sparse experimental results can be combined with numerical
results to extrapolate, with defined confidence levels, beyond ex-
perimental observations. This paper described a robust way and
potentially cheap method to achieve this, which can readily be
extended to other experiments and to other models.
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