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ABSTRACT
Linear techniques can predict whether the non-oscillating

(steady) state of a thermoacoustic system is stable or unstable.
With a sufficiently large impulse, however, a thermoacoustic sys-
tem can reach a stable oscillating state even when the steady
state is also stable. A nonlinear analysis is required to predict
the existence of this oscillating state. Continuation methods are
often used for this but they are computationally expensive.

In this paper, an acoustic network code called LOTAN is
used to obtain the steady and the oscillating solutions for a hor-
izontal Rijke tube. The heat release is modelled as a nonlinear
function of the mass flow rate. Several test cases from the lit-
erature are analysed in order to investigate the effect of various
nonlinear terms in the flame model. The results agree well with
the literature, showing that LOTAN can be used to map the steady
and oscillating solutions as a function of the control parameters.
Furthermore, the nature of the bifurcation between steady and
oscillating states can be predicted directly from the nonlinear
terms inside the flame model.

NOMENCLATURE
A amplitude
C coefficient in Levine-Baum model
h generic function

∗Address all correspondence to this author.

i imaginary unit
ℑ imaginary part
k flame constant
m mass flow rate
p pressure
q derivative of heat release rate
Q heat release rate
r nonlinear flame model amplitude
R control parameter
ℜ real part
t time
T transfer matrix
u velocity
x amplitude of the fundamental mode

Greek:

α saturation ratio
ε small parameter
ζ damping coefficient
η velocity fluctuation
λ oscillation period
µ polynomial function’s coefficient
φ phase
τ time delay
ω angular frequency
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Superscripts:

¯ mean quantity
′ fluctuating quantity
ˆ complex quantity
L linear
m frequency harmonic

Subscripts:

F fold point
H Hopf point

INTRODUCTION
Combustors often suffer from thermoacoustic instabilities,

which lead to large amplitude pressure and heat release oscilla-
tions. These instabilities are due to coupling between the un-
steady heat release rate and the acoustic oscillations inside the
combustor. Such oscillations can lead to violent vibrations within
the system, with the risk of complete failure.

In the 1960’s it was observed that some stable solid rockets
motors would suddenly jump to a self-sustained oscillation state,
when pulsed [1]. A similar problem has been observed in gas tur-
bine combustion chambers [2] and in models of thermoacoustic
systems [3–5].

Many studies were carried out on rocket engines, where the
oscillations have such high amplitudes that the gas dynamics are
nonlinear [6–12]. Most of these analyses considered nonlinear
gas dynamics and linear combustion models. The conclusion of
these studies was that nonlinear gas dynamics, even up to third
order, is not able to explain triggering [13]. Nonlinear combus-
tion was later considered [3, 14, 15]. In these papers the heat
release was a quadratic or rectified (modulus sign) function of
the fluctuating velocity and pressure. These studies showed that
triggering could be achieved when nonlinear combustion is taken
into account and different types of nonlinear models that give rise
to experimentally-observed behaviour were explored.

Lean premixed combustion has been introduced in gas tur-
bine engines in order to reduce the emission of NOx. This, how-
ever, increases susceptibility to thermoacoustic instability, lead-
ing to increased interest in this subject [16]. The energy density
is considerably less than that in a rocket engine so the thermoa-
coustic oscillations have lower amplitude and are usually suf-
ficiently small that nonlinear gas dynamics can be neglected.
Moreover, in gas turbines, the heat release fluctuations tend to
be a function of the velocity fluctuations rather than the pressure
fluctuations. This paper is restricted to linear gas dynamics and
nonlinear combustion with velocity coupling because triggering
seems to be particularly influenced by nonlinear combustion but
not by nonlinear gas dynamics.

The main aim of this paper is to show that it is easy for net-
work models such as LOTAN to map the bifurcation diagram
as a function of a control parameter. The velocity-coupled heat
release response is varied. This is one of the most influential
factors that determines whether the Hopf point leads to a subcrit-
ical or a supercritical bifurcation, as well as whether there is a
subsequent fold bifurcation. The bifurcation diagrams show the
amplitude of limit cycles as a function of the parameters of the
system. This is useful if there is a known bound on the accept-
able oscillation amplitude. They also show whether the point of
linear instability (the Hopf bifurcation) is supercritical or sub-
critical. This is an important qualitative distinction because: in a
subcritical system, high amplitude oscillations appear suddenly
when the flow becomes linearly unstable; in a supercritical sys-
tem, the system can exhibit self-sustained oscillations even when
it is linearly stable.

After a brief introduction to nonlinear flame models and bi-
furcation diagrams (Section 1 and 2), there is a brief explana-
tion about how LOTAN works (Section 3). In Section 4 several
nonlinear flame models from the literature are then examined in
order to test different types of nonlinearities. The obtained re-
sults from LOTAN are compared with those from the literature
in order to assess the ability of LOTAN to map the bifurcation
diagrams. All these analyses are applied to a simple horizontal
Rijke tube. This is sufficient here because this work is concerned
with the heat release model rather than the acoustic network. The
same qualitative behaviour is expected in more complex acoustic
networks.

1 Non-Linear Analysis
Linear models are not able to predict triggering instabilities

and limit cycle amplitudes. In order to get this kind of informa-
tion, nonlinearities must be introduced into the model and the
analysis. In Fig. 1 two diagrams with the same control parame-
ter R are shown. The variable on the vertical axis is the steady
state amplitude of the system, which is often the peak-to-peak
amplitude of the oscillations. At low values of R there is a solu-
tion with zero amplitude, which is known as the stable solution
at zero (solid line in the figure). When R reaches RH , this solu-
tion becomes unstable. This point is known as a Hopf bifurca-
tion point. For R greater than RH , the solution at zero amplitude
is unstable (dashed line) and the system starts to oscillate and
eventually reaches the steady state amplitude (solid line at non-
zero amplitudes), which is the limit cycle or the stable periodic
solution.

The nonlinear behaviour around the Hopf bifurcation point
determines two different types of bifurcation. The first type is
the supercritical bifurcation (Fig. 1a) and it is characterized by
a gradually increase of the amplitude as R > RH . For R < RH
all perturbations imposed on the system tend to decay to zero,
whereas for R > RH all the perturbations tend to reach a new
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FIGURE 1. Steady state oscillation amplitude as a function of R for
(a) a supercritical bifurcation and (b-c) a subcritical bifurcation. As the
control parameter R is increased, the system follows the red arrow path.
As it is decreased, the system follows the blue arrow path.

stable periodic solution, which is a limit cycle equilibrium. As
the control parameter R is increased, the system follows the red
arrow path. As it is decreased, the system follows the blue ar-
row path. The second type is the subcritical bifurcation (Fig. 1b)
and it is characterized by a sudden increase of the steady state
amplitude as R increases through RH , reaching the limit cycle
equilibrium at higher amplitudes (red arrows path). Decreasing
the control parameter R, the perturbations imposed on the sys-
tem reach a stable periodic solution until R = RF with RF < RH ,

where RF is referred to the fold point. As R decreases through RF
all perturbations decay to zero, as shown by the blue arrow path
in Fig. 1b. The dashed line in Fig. 1b, located between RF e RH ,
is known as the unstable periodic solution [17]. Fig. 1c shows
a particular type of subcritical bifurcation, since it is composed
of an initial supercritical bifurcation with two fold points which
determine the subcritical behaviour of the bifurcation diagram.
The arrows in the figure explain how the system answers to the
perturbations imposed on it.

Bifurcation diagrams can be obtained by systematic varia-
tion of parameters and tracking direct time integration [18, 19],
even if this method is computationally expensive. The basins of
attraction of the limit cycle do not depend on the initial state. The
initial state determines which basin of attraction the state is in.

Another method for obtaining the bifurcation diagram is nu-
merical continuation [15, 20, 21]. This approach is based on the
iterative solution of a set of parameterized nonlinear equations
given an initial guess. The diagram is tracked varying a parame-
ter and including the solutions which satisfy the set of equations
for a given state of the system. The advantages are that an un-
stable limit cycle can be computed and that it is very efficient in
obtaining the dependance of the solution from the control param-
eter compared to the other methods. The disadvantage is that it
takes a long time to map the bifurcation diagram and becomes
too computationally expensive for more than around 100 degrees
of freedom. Thanks to improvements in the method and in the
parallel computing, continuation methods are likely to become
important tools in nonlinear analysis of thermoacoustics.

DDE-BIFTOOL is a software based on the numerical con-
tinuation methods for delay systems [22,23]. The steady state of
the system is evaluated iteratively through the Newton-Raphson
scheme and the steady state solution is used for tracking the bi-
furcation diagram as the control parameter varies. This has been
used by Juniper [24] and Subramanian [25].

In this paper the bifurcation diagrams are obtained by means
of an acoustic network model called LOTAN. This is similar
to the Flame Describing Function approach described in Noiray
[26] and some of Dowling’s earlier papers [27].

2 Weakly Nonlinear Analysis
The appropriate analysis for determining the nature of a

Hopf bifurcation point is a weakly nonlinear analysis. This
has been performed before on thermoacoustic systems [6] and
makes similar assumptions to the time averaging approach in
many of Culick’s papers. This paper differs from others due to
the Maclaurin expansion (2) and because the weakly nonlinear
analysis is performed on a generic governing equation for fluc-
tuations around the steady state in a single mode thermoacoustic
system:

ẍ+ x+ζ ẋ+Q(x(t− τ)) = 0. (1)
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The variable x can be identified with the amplitude of the
fundamental mode of the velocity fluctuation, η , in a simple
Rijke tube model [4, 24] or with η in Ref. [8]. In line with
Refs. [4, 24] the damping coefficient, ζ , appears explicitly and
the heat release is velocity-coupled with a time delay τ .

One of two assumptions must be made: (1) that the time
delay, τ , is small compared with the oscillation period, λ , or (2)
that x is periodic in t. The first of these is chosen here because
it is less restrictive, so Q(x(t− τ)) ≈ Q(x− τ ẋ). In a moment a
weakly nonlinear analysis around the Hopf bifurcation point will
be performed, at which oscillations in Q are small. In this case it
is valid to take the Maclaurin expansion of Q:

Q(x(t−τ))≈Q1×(x−τ ẋ)+Q2×(x−τ ẋ)2+Q3×(x−τ ẋ)3+. . . ,
(2)

where q1 ≡ Q′(0), q2 ≡ Q′′(0)/2! and q3 ≡ Q′′′(0)/3!. For
the weakly nonlinear analysis, this expansion is more general
than assuming that Q is a specified function of η , as in Refs.
[3, 6, 8, 10–13, 15, 28, 29]. In this paper, Q will be expanded only
to third order because this is the lowest order that determines the
behaviour around the Hopf bifurcation point. Eq.(2) is substi-
tuted into Eq.(1), which is re-arranged to give:

ẍ+(1+q1)x+(ζ −τq1)ẋ+q2(x−τ ẋ)2 +q3(x−τ ẋ)3 = 0. (3)

The first two terms are those of a harmonic oscillator with
frequency (1+ q1)

1/2. (The shift in frequency due to heat re-
lease was noted by Rayleigh [30] pp. 226-227.) The third term
represents the first order competition between heat release and
damping. Around the Hopf bifurcation point they nearly cancel
so this term is small. The final two terms are nonlinear and are
small around the Hopf bifurcation because the amplitude of x is
small. Eq.(3) can therefore be put into the form:

ẍ+(1+Q)x+ εh(x, ẋ) = 0, (4)

where ε is a small parameter. It is then susceptible to a two-
timing analysis [17].

A fast time, λ , and a slow time, T , are defined such that
λ = t and T = εt. These variables, T and λ , are treated as if they
are independent. The variable x is then expressed as a function of
λ , T , and ε . The variables ẋ and ẍ are evaluated using the chain
rule:

x(λ ,T,ε) = x0(λ ,T )+ εx1(λ ,T )+O(ε2) (5)

ẋ =
∂x0

∂λ
+ ε

(
∂x1

∂λ
+

∂x0

∂T

)
+O(ε2) (6)

ẍ =
∂ 2x0

∂λ 2 + ε

(
∂ 2x1

∂λ 2 +2
∂ 2x0

∂λ∂T

)
+O(ε2). (7)

Eq.(5 – 7) are substituted into Eq.(3) and equated at different
orders of ε . At O(ε0) and O(ε1) respectively:

∂ 2x0

∂λ 2 +(1+q1)x0 = 0, (8)

∂x1

∂λ 2 +2
∂ 2x0

∂T ∂λ
+(1+q1)x1 +(ζ − τq1)

∂x0

∂λ
+

+q2

(
x0− τ

∂x0

∂λ

)2

+q3

(
x0− τ

∂x0

∂λ

)3

= 0. (9)

If variations of x0 in the slow timescale, T , are frozen then
Eq.(8) collapses to an O.D.E. with solution

x0 = r cos(ωλ +φ), (10)

where ω2 = (1+q1) and r and φ are functions of the slow time,
T . Eq.(10) is substituted into Eq.(9), which is re-arranged to give
an inhomogeneous O.D.E. for x1:

dx1
dλ 2 +ω2x1 =

[
2ωrφ ′−q3

3(1+τ2ω2)
4 r3

]
cos(ωλ +φ)+

+
[
2ωr′+(ζ − τq1)ωr−q3

3τω(1+τ2ω2)
4 r3

]
sin(ωλ +φ)+

+ terms in cosn(ωλ +φ) and sinn(ωλ +φ) where n 6= 1.
(11)

To avoid secular terms, the expressions in square brackets in
Eq.(11) must be zero. This leads to an expression for the evolu-
tion of the amplitude, r, and phase, φ , on the slow timescale, T ,
for r 6= 0:

dr
dT

=
(τq1−ζ )

2
r+

3τ(1+ τ2ω2)

8
q3r3 (12)

dφ

dT
=

3(1+ τ2ω2)

8ω
q3r2 (13)

The first term on the RHS of Eq.(12) represents linear driv-
ing if τq1 > ζ and the second term represents cubic saturation if
q3 is negative or cubic enhancement if q3 is positive. There is a
periodic solution if dr/dT = 0, which occurs when

r =±
(

4(ζ − τq1)

3q3τ(1+ τ2ω2)

)1/2

. (14)

Assuming that q1 is positive, this gives two types of solution,
depending on whether q3 is positive or negative, as shown in
Fig. 2.

The same result can be derived with a time-averaging ap-
proach. This shows that cubic terms are required in order to pre-
dict whether a bifurcation is supercritical or subcritical.
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FIGURE 2. Bifurcation diagrams around the Hopf point predicted
from the weakly-nonlinear analysis. Solid lines are stable solutions.
Dashed lines are unstable solutions. The type of Hopf bifurcation de-
pends on the sign of q3 in Eq.(14). q3 is the third derivative of q(x) in
the Maclaurin series Eq.(2).

3 LOTAN’s Approach
LOTAN is an acoustic network model which uses linear

theory to predict the combustion oscillations in LPP combus-
tors [31–33]. It is possible to obtain the frequencies of the res-
onant modes, their stability, and their modeshapes. Introducing
nonlinear flame models, it is possible to predict the limit cycle
amplitudes both in the frequency and in the time domain.

The model assume a perfect gas with temperature written
in terms of pressure and density. The flow is assumed to be
composed of a steady axial mean flow and a small perturbation.
The mean flow and the perturbations can be assumed to be one-
dimensional. The model is formulated in terms of a network of
modules describing the features of the geometry, where straight
ducts are joined by other modules. Due to the modular form,
other components could easily be added to the model, such as
area changes and combustion zones. For the straight ducts mod-
ules, wave propagation is used to relate the perturbations at one
end of the duct to those at the other. The rest of the modules
are assumed to be acoustically compact. Quasi-steady conserva-
tion laws for mass, momentum and energy are used to find the
perturbations. At a combustion zone, the unsteady heat release
is related to the flow disturbances by a flame transfer function.
Acoustic boundary conditions are imposed at inlet and outlet of

the geometry. In order to find the resonant modes of the system,
an initial value for ω is guessed and the perturbations are calcu-
lated, starting at the inlet and stepping through the modules to the
outlet. Usually this solution will not match the outlet boundary
condition, so ω is iterated to satisfy this constraint. The fre-
quency is ℜ(ω)/(2π), and the growth rate of the oscillations is
defined as −ℑ(ω). If the growth rate is negative, the mode is
linearly stable, whereas if the growth rate is positive, the mode
is unstable and the oscillations grow in amplitude until nonlinear
effects become important and a limit cycle is achieved.

Combustion is assumed to take place in a single zone, which
is acoustically compact in the axial direction. The flame model
relates the heat release fluctuations Q′ to the unsteady flow at
previous times. Eq.(15) shows an example of a simple saturation
flame model:

Q′(t) =

 Q′(t) f or | Q′(t) |≤ αQ,

αQsign(Q′(t)) f or | Q′(t) |> αQ,
(15)

where α is the saturation ratio, the prime denotes a perturbation
and the overbar a mean value, so that Q(t) = Q+Q′(t). In the
frequency domain the perturbed quantities are regarded as com-
plex functions of time:

m′(t) = ℜ(m̂eiωt). (16)

Also heat release can be represented as a complex function:

Q′(t) = ℜ(Q̂eiωt). (17)

The (linear) flame transfer function used in linear-mode calcula-
tions is defined by:

T L
f lame(ω) =

Q̂/Q
m̂/m

=−ke−iωτ , (18)

where τ is the time delay and k is the flame constant. In the case
of a flame, k represents a dimensionless constant of proportion-
ality between the heat release and the mass flow.

For finite disturbances, Q′(t) may not be harmonic. If it is
still periodic, it can be described by a Fourier series:

Q′(t) = ℜ

(
∞

∑
m=0

Q̂eimωt
)
. (19)

In frequency domain limit cycle calculations, higher harmonics
are neglected such that Q̂ = Q̂(1). It is acceptable to neglect these
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harmonics in heat release because, if the velocity fluctuation is
harmonic, the change in acoustic energy due to these harmonics
integrates to zero over a cycle. In so doing, a nonlinear flame
transfer function is defined as a function of frequency and ampli-
tude A =| m̂ | /m. The first Fourier coefficient is equal to:

Q̂(1) =
ω

π

∫ 2π/ω

0
Q′(t)eiωtdt. (20)

Using Eq.(15) and Eq.(16), depending on the flame model, the
nonlinear flame transfer function NFTF is obtained and ex-
pressed as a multiple of the linear transfer function:

NFT F =
Tf lame(ω,A)
T L

f lame(ω)
=

Q̂(1)

Q̂L
, (21)

with Q̂L being the value from the linearised flame model. The
dependance of the flame transfer function on the amplitude A is
investigated in order to detect the limit cycle amplitudes and to
build the bifurcation diagram. LOTAN first tries to find a linear
mode for the nonlinear flame model, such as Eq.(15), and then
tries to reach the limit cycle in steps. At first, stepping is in the
amplitude factor, which is equivalent to increasing the amplitude
A of the perturbations. When the growth rate starts to decrease,
stepping is transferred to the growth rate, until this is zero. At
zero growth rate, the limit cycle solution r is found. It is also
possible to start from an initial guess for the amplitude, rather
than from zero. Further details about how the acoustic network
code works and how the amplitude of the limit cycle is detected
can be found in the literature [31–33].

4 Results
The behaviours of various heat release models from the lit-

erature have been compared with the corresponding behaviours
obtained using LOTAN. The configuration is a simple Rijke tube
with the hot wire placed at one quarter of the tube length. The
temperature increases from 300 K to 700 K across the combus-
tion zone. The time delay is not varied in this study and is fixed
at τ = 0.02 s. This study isolates the amplitude dependance of
the heat release and not the amplitude dependance of the time de-
lay. Open-end inlet and outlet boundary conditions, p′ = 0, are
considered. For all cases, the control parameter for mapping the
bifurcation diagram is the flame constant.

First, the saturation flame model introduced by Dowling [34]
has been analysed. In this model the amplitude of heat release
fluctuations increases linearly with the amplitude of the mass
flux fluctuations for low amplitudes and then saturates to a con-
stant value at high amplitudes. The bifurcation diagram has a

zero fixed point, followed by a sudden jump to the stable peri-
odic solution. This Hopf bifurcation is neither supercritical nor
subcritical (it is degenerate). This is because the model switches
discontinuously from linear behaviour to saturated behaviour.

Next the work by Ananthkrishnan et al. [35] has been taken
as reference. This nonlinear flame model is a polynomial func-
tion of the mass flow rate. Only the influence of the odd-powered
polynomial terms are examined because, although even-powered
polynomial terms are physically admissible, their contribution to
the acoustic energy integrates to zero over a cycle. Eq. (22) rep-
resents the nonlinear flame model with a third-powered term:

Q′

Q
=−k

[
µ2

(
m′

m

)3

+µ0
m′

m

]
. (22)

The position of the Hopf point is determined by the linear term
(see section 2). If this is zero, the Hopf point occurs where the
heat release parameter is at zero. The flame model is a cubic
curve without saturation, Fig.3a. The nonlinear flame transfer
function (NFTF) is a parabola with positive curvature and the in-
tersection with the vertical axis depends on µ0, Fig.3b. In this
case µ2 = 1 and µ0 = 0.2. The NFTF is always positive for pos-
itive amplitudes A and it monotonically increases, which means
that a subcritical bifurcation is expected, Fig. 4.

Beyond the Hopf point, the oscillations grow without limit
because both µ2 and µ0 are positive. Before the Hopf point, the
periodic solution is unstable for the same reason (see Fig. 2).

Next, a fifth order term is added to the previous flame model
[35], Eq.(23). The coefficient µ4 of the fifth order terms of the
nonlinear flame model contributes to the bifurcation diagram at
large amplitudes.

Q′

Q
=−k

[
µ4

(
m′

m

)5

+µ2

(
m′

m

)3

+µ0
m′

m

]
. (23)

The flame model is a fifth-powered curve without saturation,
Fig. 5a. In this case µ4 = 1, µ2 =−1 and µ0 = 0.3. The NFTF is
always positive and has negative curvature followed by positive
curvature, Fig. 5b.

The bifurcation diagram shows a supercritical Hopf bifurca-
tion to a stable periodic solution at small amplitudes r followed
by a fold bifurcation to an unstable periodic solution at large am-
plitudes r, Fig. 6. This corresponds to the large increase of the
FTF at high amplitudes, which occurs when µ4 > 0. The pattern
shown in Fig. 6 at lower amplitudes r is similar to that shown in
Fig. 3 of Ananthkrishnan and Culick [35]. There are some dif-
ferences. First, the horizontal axis of Fig. 3 in Ref. [35] is the
damping coefficient α1, whereas the horizontal axis of Fig. 6 is
the flame constant; the control parameter is different, but the be-
haviour is the same. Second, the nonlinear flame model of Anan-
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(a)

(b)

FIGURE 3. Flame Model (a) and Nonlinear Flame Transfer Function
(b) for the polynomial nonlinear flame model with µ2 = 1 and µ0 = 0.2
in Eq.(22).

FIGURE 4. Bifurcation Diagram for the polynomial nonlinear flame
model with µ2 = 1 and µ0 = 0.2 in Eq.(22).

thkrishnan and Culick contains a term, Ĉ(2)
11 η̇2, from the second

acoustic mode, which is not present in our model.
The next flame model is similar to the previous one, Eq.(23),

with different coefficient values: µ4 =−1, µ2 = 1 and µ0 = 0.2,
Fig. 7a. We consider only the parts of the flame model for which
the heat release perturbation has the same sign as the mass flow
rate perturbation. This NFTF is always positive and has positive
curvature followed by negative curvature, Fig. 7b. The bifurca-

(a)

(b)

FIGURE 5. Flame Model (a) and Nonlinear Flame Transfer Function
(b) for the polynomial nonlinear flame model with µ4 = 1, µ2 =−1 and
µ0 = 0.3 in Eq.(23).

FIGURE 6. Bifurcation Diagram for the polynomial nonlinear flame
model with µ4 = 1, µ2 =−1 and µ0 = 0.3 in Eq.(23).

tion diagram shows a subcritical Hopf bifurcation to an unstable
periodic solution at small amplitudes r followed by a fold bifur-
cation to a stable periodic solution at large amplitudes r, Fig. 8.

Wicker and Greene (1996) investigated the nonlinear com-
bustion response inside rocket motors [3], introducing three dif-
ferent nonlinear flame models. The Galerkin method was used
in order to investigate conditions required for triggering and the
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(a)

(b)

FIGURE 7. Flame Model (a) and Nonlinear Flame Transfer Function
(b) for the polynomial nonlinear flame model with µ4 =−1, µ2 = 1 and
µ0 = 0.2 in Eq.(23).

FIGURE 8. Bifurcation Diagram for the polynomial nonlinear flame
model with µ4 =−1, µ2 = 1 and µ0 = 0.2 in Eq.(23).

requirements for stable initial pulses. Their flame models were:

Q̇′ ∝ p′2,u′2, p′u′, (24)
Q̇′ ∝ |u′|, |p′|; (25)
Q̇′ ∝ u′|p′|, p′|u′|. (26)

They found that “nonlinear combustion response proportional
to quadratic functions of acoustic pressure and velocity is inca-
pable of triggering a finite initial disturbance to a stable limit
cycle” [3]. They found that triggering to a stable limit cycle
is possible if the heat release is a function of rectified (modu-
lus sign) acoustic velocity. With LOTAN, we also find that the
quadratic term in the flame model, Eq.(24), by itself, cannot de-
termine the type of bifurcation. This is expected because the
contribution of this term to the acoustic energy integrates to zero
over a cycle. We also find that Eq.(25) cannot determine the type
of bifurcation. This is because the gradient of the modulus sign
is undefined at zero. The third flame model, Eq.(26), is very sim-
ilar to that proposed by Levine and Baum [14]. Levine and Baum
suggested a velocity coupling function of the form F = f (u′)u′

with f (u′) =Cvc|u′| to model the nonlinear combustion response
to the acoustic velocity. Ananthkrishnan and Culick [15] used
this to obtain the bifurcation diagrams through a continuation
and bifurcation software called AUTO97. Following the same
approach, but using the mass flow rate instead of the acoustic ve-
locity, the nonlinear flame model has been defined, Eq.(27). The
flame model is assumed to saturate as shown in Fig. 9a and as
described in Eq.(15).

Q′

Q
=−k

[
C
∣∣∣∣m′m

∣∣∣∣+C1

]
m′

m
. (27)

The flame transfer function is a straight line at small amplitudes,
with the linear damping coefficient C1 determining the intersec-
tion point of the NFTF curve on the vertical axis of Fig.9b and
the sign of C determining the slope of the NFTF curve at small
amplitudes, Fig. 9b. At higher amplitudes, saturation determines
the shape of the transfer function, which tends to zero at high
amplitudes.

In this case, the Hopf bifurcation is still undefined because
the gradient of the modulus function is undefined around zero. If
the modulus function is smoothed around zero, the Hopf bifurca-
tion become subcritical and leads to an unstable limit cycle.

The Levine-Baum nonlinear flame model is not entirely sat-
isfactory without saturation because the fluctuations reach infi-
nite amplitude. In order to overcome this problem, Levine and
Baum suggested a threshold amplitude. Ananthkrishnan and
Culick [15] proposed a model similar to the Levine-Baum model
for small velocity values with the addition of a quadratic term
for large velocity values as correction. The resultant NFTF is a
parabola, which gives a fold point with a subsequent stable pe-
riodic solution, which is absent in the diagram from the Levine-
Baum model without any saturation. Burnley and Culick sug-
gested a nonlinear flame model with zero values in a narrow
range around zero [21]. The threshold problem persists, how-
ever, and the model is also non-physical.

The last analyzed flame model is a form of King’s law
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(a)

(b)

FIGURE 9. Flame Model (a) and Nonlinear Flame Transfer Function
(b) for a Levine-Baum type nonlinear flame model with C = 2 and C1 =

0.5 in Eq.(27).

FIGURE 10. Bifurcation Diagram for a Levine-Baum type nonlinear
flame model with C = 2 and C1 = 0.5 in Eq.(27).

adapted first by Heckl [36] and then used by Balasubramanian
and Sujith [4]. This model is characterized by the presence of a
square root, Eq.(28), with an absolute value in order to take into
account negative values. Not all the coefficients and the parame-
ters describing the Rijke tube dimensions, present in the standard
King’s law [4], have been considered. Only the flame constant,

k, is used as the control parameter.

Q′

Q
=−k

(√∣∣∣∣13 +
m′

m

∣∣∣∣−
√

1
3

)
. (28)

A sketch of this flame model is shown in Fig. 11a. In Fig. 12

(a)

(b)

FIGURE 11. Flame model (a) and flame transfer function (b) on the
form of adapted King’s law in Eq.(28).

the bifurcation diagram is shown: a subcritical bifurcation is ob-
tained. The unstable periodic solution, which is from the Hopf
point to the fold point, covers a narrow range of flame constant
values. The amplitude r of the stable periodic solution grows
without limit as the flame constant increases. For this case, the
results agree very well with those obtained by Waugh and Ju-
niper [24, 37] using DDE-BIFTOOL. The trend is similar, but
there are some obvious differences due to the different geometri-
cal and operating parameters.

These results show that LOTAN is able to map bifurcation
diagrams without any extra routines. The results agree well with
those from the literature: trends are generally well caught. It
is possible to determine the particular type of bifurcation di-
rectly from the flame model or from the flame transfer func-
tion. If the module of the nonlinear flame transfer function in-
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FIGURE 12. Bifurcation diagram when the flame model has the form
of adapted King’s law with saturation in Eq.(28).

creases from the value at zero amplitude A, a subcritical bifur-
cation is expected, as for the third order polynomial (Figg. 3-4),
the smoothed Levine Baum type (Figg. 9-10) and the King’s law
type (Figg. 11-12). If the NFTF decreases from the value at zero
amplitude A, a supercritical bifurcation is expected, as for the
fifth order polynomial (Figg. 5-6). Generally, when the NFTF
increases there is an unstable periodic solution, whereas when
the NFTF decreases there is a stable periodic solution. Looking
at the flame model, it is possible to predict the shape of the bi-
furcation diagram. If the third derivative is positive, a subcritical
bifurcation is expected, otherwise a supercritical bifurcation is
expected. As previously described in Section 2, a weakly non-
linear analysis determines the nature of a Hopf bifurcation point.
For example, for the nonlinearity in King’s law, Eq.(28), it is
easy to show that q3 > 0 and so the Hopf bifurcation is subcriti-
cal, Fig. 12, according to Eq.(14). The same can be done for the
other flame models analysed in this paper: for the third-powered
term in Eq.(22), for the fifth-powered term in Fig. 7 and for the
smoothed Levine-Baum type flame model in Eq.(27) the third
derivative is positive, q3 > 0 and a subcritical bifurcation is ob-
tained. For the fifth-powered term flame model in Fig. 6 the third
derivative is negative, q3 < 0 and a supercritical bifurcation is ob-
tained. These results demonstrate how it is possible to predict the
shape of the bifurcation diagram directly from the flame model.

5 CONCLUSIONS
In this work, the main assumption is that thermoacoustic

systems should be considered within the context of nonlinear
theory. The behaviour of the system is determined by the nature
of the Hopf bifurcation, which can be examined both through
a weakly nonlinear analysis and a continuation method. If the
Hopf bifurcation is subcritical, then triggering is possible. If
the Hopf bifurcation is supercritical, triggering is not certain, but
may be possible.

The ratio of the linear heat release term to the linear damping
term determines the position of the Hopf bifurcation point. The

odd-powered terms of the flame model as a polynomial function
of the mass flow rate determines the shape of the bifurcation dia-
gram: if they are negative, the bifurcation is supercritical; if they
are positive, the bifurcation is subcritical.

The main conclusion of this paper is that bifurcation dia-
grams can be created with LOTAN, an acoustic network model.
LOTAN is simple to use and it takes little time to analyse the
system in the frequency domain. Previously, LOTAN has been
used to calculate the linear stability of a system, its eigenmodes
and the limit cycle amplitudes r. In this paper, various nonlinear
flame models from the literature have been examined and very
good agreement with bifurcation diagrams from the literature has
been obtained.
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