
Tutorial 1: Obtaining thermoacoustic eigenvalue sensitivities
with adjoint methods

Matthew P. Juniper
Engineering Department, University of Cambridge, UK

Contents

1. Overview. 1
2. The model and its governing equations . 1
3. Four methods to solve the governing equations . 2

3.1. The travelling wave method (fun travwave.m) . 2
3.2. The Helmholtz Finite Difference method (fun Helm FD.m). 4
3.3. The Helmholtz Finite Element method (fun Helm FE.m). 5
3.4. The Galerkin method (fun Galerkin.m). 6
3.5. Results . 6

4. Eigenvalue sensitivity . 6

1. Overview

This tutorial starts from the acoustic momentum and energy equations for a 1D thermoa-

coustic system with zero mean flow. Four solution methods are described and coded as Mat-

lab functions: a travelling wave method (fun_travwave.m), a Finite Difference Helmholtz

method (fun_Helm_FD.m), a Finite Element Helmholtz method (fun_Helm_FE.m), and a

Galerkin method (fun_Galerkin.m). Small differences between their solutions arise due to

the different approximations in each method. The functions are overloaded such that the

sensitivities of the eigenvalue with respect to the model parameters can also be returned.

These sensitivities are calculated with adjoint methods. All figures and tables in the tutorial

are generated with the Matlab functions supplied with the tutorial.

2. The model and its governing equations

x0 Xxm f

q

Figure 1

Diagram of the open-ended tube extending from 0 (upstream) to X (downstream). The heat

release, q, occurs at position xf and is a function of the acoustic velocity at xm. The mean flow,
which is defined as positive in the positive x-direction, is set to zero.

We consider one-dimensional oscillations in an open-ended tube extending from 0 to

www.annualreviews.org • 1

X containing gas at uniform density, ρ, uniform pressure, p, and uniform ratio of specific

heats, γ. We set the mean flow to zero and consider planar acoustic perturbations to the

velocity, u, and pressure, p. A heat source is placed at x = xf , with heat release rate

q(t) = nu(xm, t− τ) Watts per m2, where n is a real constant with units of Joules per m3,

τ is a time delay, and xm is the position at which u is measured. We neglect the mean

density drop across the heat source, and viscous and thermal dissipation. The dimensional

acoustic momentum and energy equations are:

ρ
∂u

∂t
+
∂p

∂x
= 0 (1a)

∂p

∂t
+ γp

∂u

∂x
= (γ − 1)qδD(x− xf) (1b)

where δD is the Dirac delta. The speed of sound is c ≡
√
γp/ρ. We define a reference

length, Lref = X, a reference speed, Uref = c, and a reference pressure, Pref = p. The

non-dimensional momentum and energy equations are:

γ
∂u

∂t
+
∂p

∂x
= 0 (2a)

∂p

∂t
+ γ

∂u

∂x
= (γ − 1)qδD(x− xf) (2b)

and it is convenient to define γ′ ≡ (γ − 1)/γ. The model parameters are n, τ , xm, and xf .

3. Four methods to solve the governing equations

This tutorial demonstrates four numerical methods commonly used to solve thermoacoustic

governing equations. They are applied to (2) in order to demonstrate the principles behind

each method. When more elaborate models are considered, the codes become more intricate

but the principals remain the same.

3.1. The travelling wave method (fun travwave.m)

Integrating (2) in x and assuming no accumulation within a control volume enclosing the

heat source at xf leads to two jump conditions:

[p]
x+
f

x−
f

= 0 (3a)

[u]
x+
f

x−
f

= γ′nu(xm, t− τ) (3b)

We consider the acoustic standing wave to be the sum of a forwards-travelling wave f(x, t) =

f(x − t), and a backwards-travelling wave g(x, t) = g(t + x), such that p = f + g and

u = (f − g)/γ. These automatically satisfy (2) upstream and downstream of the heater,

where q = 0. We assume a single frequency wave and perform a Laplace transform on

f(x − t) to obtain f(x, t) = F (x, s)est = F0e−s(x−x0)est , where F0 ≡ f(x0, 0) and s is

complex. Similarly, g(x, t) = G(x, s)est = G0e+s(x−x0)est. Backwards-travelling waves

reflect off the upstream boundary, with reflection coefficient Ru, and return as forward-

travelling waves time τu ≡ 2xf later. This enforces Ff− = RuGf−e−sτu just upstream

of the heat source at xf . A similar expression is formed just downstream of the heat

source with the downstream reflection coefficient, Rd. In this tutorial, Ru and Rd are set

2

to −1. The measurement point, xm, lies upstream of the heat source, xf , so we define

another time delay τmf ≡ (xf − xm). For convenience, we define five internal parameters

(h,t,tu,td,tmf) from the four model parameters (n, τ, xm, xf):

1 % h = (gamma -1)/gamma * n

2 h = (param.gam -1)/param.gam*param.n;

3 % time delay

4 t = param.tau;

5 % tu, time for wave to travel flame -> upstream boundary -> flame

6 tu = 2*(param.x_f);

7 % td, time for wave to travel flame -> downstream boundary -> flame

8 td = 2*(1- param.x_f);

9 % tmf , time for wave to travel from flame -> measurement point

10 tmf = (param.x_f - param.x_m);

Listing 1 Definitions of the internal parameters for fun travwave.m

We eliminate Ff− and Gf+ with the boundary conditions, define φ ≡(
e−sτmf −Rue+sτmf e−sτu

)
, and express the jump conditions (3) in matrix form:

L(s)q ≡

[
(1 +Rue−sτu) −(1 +Rde

−sτd)

(1−Rue−sτu) + (γ′ne−sτ)φ (1−Rde−sτd)

][
Gf−
Ff+

]
=

[
0

0

]
(4)

This is coded as an embedded function fun_L.m (which also permits R to vary):

1 function [L] = fun_L(s,h,t,tu ,td,tmf ,R)

2 L = [...

3 1+R*exp(-s*tu), ...

4 -1-R*exp(-s*td); ...

5 1-R*exp(-s*tu)+h*exp(-s*t)*(exp(-s*tmf)-R*exp(+s*tmf)*exp(-s*tu)), ...

6 1-R*exp(-s*td) ...

7];

8 end

Listing 2 fun L : embedded function that creates matrix L(s)

For the iteration algorithm, we also require ∂L/∂s, which is derived by hand and coded as

another embedded function:

1 function [dLds] = fun_dLds(s,h,t,tu,td ,tmf ,R)

2 dLds = [...

3 -R*tu*exp(-s*tu), ...

4 R*td*exp(-s*td); ...

5 R*tu*exp(-s*tu) ...

6 -h*(exp(-s*tmf)-R*exp(+s*tmf)*exp(-s*tu))*t*exp(-s*t) ...

7 +h*(-tmf*exp(-s*tmf)-R*tmf*exp(+s*tmf)*exp(-s*tu) ...

8 +R*tu*exp(+s*tmf)*exp(-s*tu))*exp(-s*t), ...

9 R*td*exp(-s*td) ...

10];

11 end

Listing 3 fun dLds : embedded function that creates matrix ∂L/∂s

We then find s for which the determinant of L(s) equals zero. These are the eigenvalues, s,

with corresponding eigenvectors, q ≡ [Gf−, Ff+]T , and are found with a Newton method

that uses Jacobi’s formula:

1 % Set tolerance , initial s, and dummy ds

2 tol = 1e-8; s = scheme.s0; dels = 2*tol;

3 while abs(dels) > tol

www.annualreviews.org • 3

4 % Evaluate L

5 L = fun_L(s,h,tu,td ,tmf ,t,R);

6 % Evaluate dLds

7 dLds = fun_dLds(s,h,tu,td,tmf ,t,R);

8 % evaluate new s with Jacobi ’s formula

9 dels = - 1/ trace(L\dLds);

10 % Update s

11 s = s + dels;

12 end

13 % Evaluate the right eigenvector , q_dir , such that L*q_dir = [0;0]

14 q_dir = [+1+R*exp(-s*td) ; +1+R*exp(-s*tu)];

Listing 4 Newton method to find roots of L(s) and the corresponding eigenvector

The eigenfunctions in physical space are obtained by extracting the eigenvector [Gf−, Ff+]T ,

evaluating Ff− and Gf+ from the reflection coefficients, and substituting these into

P (x, s) = F (x, s) + G(x, s) = Ff−e−s(x−xf) + Gf−e+s(x−xf) and U(x, s) = (F (x, s) −
G(x, s))/γ = (Ff−e−s(x−xf)−Gf−e+s(x−xf))/γ upstream of the heat source, and into sim-

ilar expressions downstream of the heat source.

3.2. The Helmholtz Finite Difference method (fun Helm FD.m)

Combining equations (2a) and (2b) and performing Laplace transforms, p(x, t) = P (x)est,

gives: s2P − P ′′ = (γ′ne−sτ)δD(x − xf)P ′(xm), where P ′ ≡ dP/dx. In this method, the

problem is better posed if the heat is released over a region of space, v(x), centred on xf ,

and if the reference velocity, U(xm), is measured over a region of space, w(x), centred on

xm. The governing equation then becomes s2P − P ′′ = (γ′ne−sτ)v(x)
∫
P ′w(ξ)dξ, where∫

v(x)dx = 1 and
∫
w(ξ)dξ = 1. In the finite difference framework, P (x) is discretized onto

Gauss–Lobatto spaced gridpoints and its values held in the column vector P. A difference

matrix D is formed such that P′ is given by DP. Similarly, a mass matrix M is formed

such that
∫
fg dx = fTMg. The discretized governing equation is:

L(s)q ≡
(
s2I + e−sτF−D2)P = 0, (5)

where F ≡ γ′nvwTMD and v and w are column vectors containing the values of v(x) and

w(x) at the gridpoints. For the tutorial, v(x) and w(x) are both Gaussian distributions

with the same width. The internal parameters (F,t) are expressed in terms of the four

model parameters (n, τ, xm, xf):

1 % Generate the heat release envelope , v(x), which integrates to 1

2 v = exp(-(x-param.x_f).^2/ param.an^2)/sqrt(pi)/param.an;

3 % Generate the measurement envelope , w(x), which integrates to 1

4 w = exp(-(x-param.x_m).^2/ param.an^2)/sqrt(pi)/param.an;

5 % Wrap v, w, gamma , param.n, M, and D into a matrix , F

6 F = (v*w’) * (param.gam -1)/param.gam * param.n * M * D;

7 % Extract tau

8 t = param.tau;

Listing 5 Definitions of the internal parameters for fun Helm FD.m

The same Newton method is used, requiring L and ∂L/∂s:

1 function [L] = fun_L(D2 ,I,F,t,s)

2 L = s^2*I + exp(-s*t) * F - D2 ;

3 end

4

4

N fun_travwave fun_Helm_FD fun_Helm_FE fun_Galerkin

– 0.12188+3.22278i – – –

1 – – – 0.13576+3.21473i

10 – 0.00000+3.14159i 0.00000+3.15453i 0.12301+3.22226i

40 – 0.06990+3.18462i 0.10457+3.21003i 0.12363+3.22196i

100 – 0.12303+3.22356i 0.12181+3.22286i 0.12115+3.22310i

400 – 0.12182+3.22274i 0.12182+3.22275i 0.12206+3.22270i

xm = 0.20000, xf = 0.25000, n = 1.00000, τ = 0.34157, γ = 1.40000, R = −1.00000

Table 1 Eigenvalues, s, calculated with four different methods and, where relevant,

up to five different resolutions, N , for the same thermoacoustic system. The growth

rate is sr and the frequency is si. The solutions approach each other as the resolution

increases. (Tab comparisons.m)

5 function [dLds] = fun_dLds(I,F,t,s)

6 dLds = 2*s*I - t * exp(-s*t) * F ;

7 end

Listing 6 Calculation of L and ∂L/∂s for fun Helm FD.m

Homogenous Dirichlet boundary conditions on P are applied at both ends by removing

the outer rows and columns of the matrix. (For a closed tube, Homogenous Neumann

conditions are required and, for a tube with |R| 6= 1, Robin conditions are required.) Once

the eigenvalue, s, and the deficient matrix L(s) have been calculated, the eigenvectors are

found from the null space of L:

1 % Set tolerance , initial s, and dummy dels

2 tol = 1e-8; s = scheme.s0; dels = 2*tol;

3 while abs(dels) > tol

4 % Evaluate L and apply Dirichlet boundary conditions

5 L = fun_L(D2,I,F,t,s); L = L(2:N,2:N);

6 % Evaluate dL/ds and apply Dirichlet boundary conditions

7 dLds = fun_dLds(I,F,t,s); dLds = dLds (2:N,2:N);

8 % evaluate new s with QR decomposition (H. Yu) and Jacobi ’s formula

9 [Q,R] = qr(L); dels = - 1/ trace(R\(Q’*dLds));

10 % Update s

11 s = s + dels;

12 end

13 % Find the corresponding eigenvectors for P

14 L = fun_L(D2,I,F,t,s); L = L(2:N,2:N);

15 P_dir = null(L); P_dir = [0; P_dir ;0];

Listing 7 Finding the eigenmode with homogenous Dirichlet boundary conditions

using a Newton method with Jacobi’s formula

3.3. The Helmholtz Finite Element method (fun Helm FE.m)

The governing equations and solution method for the Helmholtz Finite Element method are

identical to those of the Helmholtz Finite Difference method (section 3.2) but the matrices

differ.

www.annualreviews.org • 5

3.4. The Galerkin method (fun Galerkin.m)

The acoustic velocity and pressure are expressed as sums of the acoustic modes of the

system for zero heat release with homogenous Dirichlet boundary conditions:

u(x, t) =

N∑
j=1

uj(t) cos (jπx) (6a)

p(x, t) =

N∑
j=1

pj(t) sin (jπx) (6b)

Substituting (6) into (2a) gives pj = −(γ/jπ)u̇j . Substituting these expressions into (2b),

multiplying by sin(kπx), and integrating over the domain, gives:

−ük − (kπ)2uk = γ′nvk
∑
j

uj(t− τ)wj (7)

where vk ≡ 2kπ sin(kπxf) and wj ≡ cos (jπxm). This is a set of delay differential equations

(DDEs) in the time domain for uk. Performing the Laplace transform uk(t) = Ukest leads

to

L(s)q ≡
(
s2I + e−sτF−D2)U = 0, (8)

where F ≡ γ′nvwT , v and w are column vectors containing vk and wj , D2 is a second

order difference matrix containing −(kπ)2 along the diagonal, and U is a column vector of

Uk. The internal parameters (F,t) are expressed in terms of the four model parameters:

1 % Create a column vector pi*(1:N)

2 kpi = pi*(1:N)’;

3 % Create the heat release envelope v(x)

4 v = (2* kpi) .* sin(kpi*param.x_f);

5 % Create the measurement envelope w(x)

6 w = cos(kpi*param.x_m);

7 % Wrap v, w, gamma , param.n into a matrix , F

8 F = (v*w’) * (param.gam -1)/param.gam * param.n;

9 % Extract tau

10 t = param.tau;

Listing 8 Definitions of the internal parameters for fun Galerkin.m

The solution method is then identical to that of the Helmholtz Finite Difference method

(section 3.2).

3.5. Results

Table 1 shows the eigenvalue, s, calculated at various resolutions with the four different

methods. Figure 2 shows the corresponding P (x) and U(x) eigenvectors for the highest

resolution case of each method. The eigenvectors differ only around the heat release zone,

at x = xf = 0.25. These differences arise because (i) the Galerkin method suffers from

Gibbs fringes when it attempts to form the discontinuity in U(x) and (ii) for the Helmholtz

solvers, the heat release and measurement zones are spread out in space.

4. Eigenvalue sensitivity

The principles of adjoint-based sensitivity can be explained in terms of the nonlinear eigen-

value problem L(s)q = 0, where L(s) is an operator or a matrix that depends on the

6

0 0.2 0.4 0.6 0.8 1

x

-0.5

0

0.5

1

1.5

P
r
(x
)

0 0.2 0.4 0.6 0.8 1

x

-0.2

-0.1

0

0.1

U
r
(x
)

0.23 0.24 0.25 0.26 0.27

-0.1

0

0.1

0 0.2 0.4 0.6 0.8 1

x

-0.05

0

0.05

0.1

P
i
(x
)

travelling wave
Helmholtz FD
Helmholtz FE
Galerkin

0 0.2 0.4 0.6 0.8 1

x

-2

-1

0

1

U
i
(x
)

0.23 0.24 0.25 0.26 0.27
0.6

0.7

0.8

Figure 2

Real and imaginary components of the pressure, P (x), and velocity, U(x), eigenfunctions

calculated for the highest resolution cases of the methods shown in table 1. The eigenfunctions lie

on top of each other except in the heat release zone. In the heat release zone, the wave
eigenfunction is discontinuous in u, the Galerkin eigenfunction exhibits Gibbs fringes in U , and

the Helmholtz eigenfunction is smooth because the heat release is distributed over a region of

space rather than at a point. (Tab comparisons.m)

eigenvalue s, with corresponding eigenvector q. The adjoint problem is constructed by

pre-multiplying this expression by another function q†:

q†HL(s)q = 0 . (9)

For a given eigenvalue, s, the right eigenvector, q, is defined such that (9) is satisfied

for arbitrary q†. Similarly, the left eigenvector, q†, is defined such that (9) is satisfied

for arbitrary q. A change in L at order ε induces changes to s, q, and q† at order ε.

The eigenvalue drift, δs, is found by substituting these changes into L(s)q = 0 and pre-

multiplying by q†H . At order ε this gives:

q†H
(
Lδq + (∂L/∂s)δsq + δLq

)
=0 (10)

Noting that q†HLδq = 0 for arbitrary δq, this can be re-arranged to give the sensitivity of

the eigenvalue, s, to a generic change in the operator, L(s):

δs = − q†H(δL)q

q†H(∂L/∂s)q
(11)

Magri et al. (2016) provide full details and also show how to handle degenerate eigenvalues.

The base state sensitivity is the sensitivity of the eigenvalue to changes in the model

parameters, which are (n, τ, xm, xf) in this case. All the numerical methods share the same

model parameters but have different internal parameters. The gradients of s with respect

to the model parameters are found with the chain rule. In the travelling wave method, for

example, the internal parameters are h, τ, τu, τd, τmf and the gradient of s with respect to

the heat source position, xf , is:

∂s

∂xf
= −q†H(∂L/∂xf)q

q†H(∂L/∂s)q
where

∂L

∂xf
=

dτu
dxf

∂L

∂τu
+

dτd
dxf

∂L

∂τd
+

dτmf
dxf

∂L

∂τmf
(12)

www.annualreviews.org • 7

In the Helmholtz Finite Difference method, for example, the internal parameters are (F, τ)

and the code to calculate the sensitivities of s with respect to the model parameters is:

1 %% Calculate the gradients of the internal parameters w.r.t. param .*

2 % dv/d(param.x_f)

3 dvdx_f = (2*(x-param.x_f)/param.an^2).*v;

4 % dw/d(param.x_m)

5 dwdx_m = (2*(x-param.x_m)/param.an^2).*w;

6 % dF/d(param.n)

7 dFdn = F / param.n;

8 % dF/d(param.x_f)

9 dFdx_f = (dvdx_f*w’) * (param.gam -1)/param.gam * param.n * M * D;

10 % dF/d(param.x_m)

11 dFdx_m = (v*dwdx_m ’) * (param.gam -1)/param.gam * param.n * M * D;

12

13 %% Calculate the gradients of L w.r.t. to the internal parameters

14 % Calculate dL/ds

15 dLds = fun_dLds(I,F,t,s);

16 % Calcualte dL/dF

17 dLdF = fun_dLdF(t,s);

18 % Calculate dL/dt

19 dLdt = fun_dLdt(F,t,s);

20

21 %% Calculate the gradients of L w.r.t. param.*

22 dLdn = dLdF * dFdn;

23 dLdx_m = dLdF * dFdx_m;

24 dLdx_f = dLdF * dFdx_f;

25

26 %% Calculate the normalizing inner product

27 nip = (P_adj ’ * dLds * P_dir);

28

29 %% Calculate the gradients of s w.r.t. param.*

30 ds.n = - (P_adj ’ * dLdn * P_dir) / nip;

31 ds.tau = - (P_adj ’ * dLdt * P_dir) / nip;

32 ds.x_m = - (P_adj ’ * dLdx_m * P_dir) / nip;

33 ds.x_f = - (P_adj ’ * dLdx_f * P_dir) / nip;

Listing 9 Calculation of the base state sensitivities in fun Helm FD.m

The base state sensitivities calculated with each method are shown in Table 2. They match

to the precisions expected given the small differences between the methods.

These base state sensitivities can also be calculated from δs = s(Π + ε)− s(Π), where Π

is a parameter. The sensitivities calculated this way, labelled (δs)FD, contain contributions

at second and higher orders of ε, while the sensitivities calculated with the adjoint methods

in this tutorial are exact to first order in ε. This permits an excellent debugging check for

adjoint codes, known as a Taylor Test: the difference |(δs)AD − (δs)FD| must increase in

proportion to ε2 or higher order. Conversely, if this difference increases in proportion to ε

then there must be a bug in the adjoint code. This test can be performed for one parameter

at a time or for all parameters simultaneously. Figure 3 plots |(δs)AD − (δs)FD| against ε2

when all base state parameters are changed simultaneously for all four methods. Each is a

straight line through the origin, showing that the adjoint calculations are indeed exact to

first order. It is worth introducing a small bug into the codes to see its influence on this

test.

8

∂s/∂n ∂s/∂τ ∂s/∂xm ∂s/∂xf
fun_travwave.m +0.10298 + 0.08269i +0.25395 − 0.34197i −0.26649 − 0.17767i +0.43129 + 0.21134i

fun_Helm_FD.m +0.10294 + 0.08266i +0.25384 − 0.34181i −0.26635 − 0.17759i +0.43104 + 0.21127i

fun_Helm_FE.m +0.10294 + 0.08265i +0.25384 − 0.34181i −0.26635 − 0.17759i +0.43104 + 0.21127i

fun_Galerkin.m +0.10332 + 0.08257i +0.25349 − 0.34304i −0.26685 − 0.17750i +0.39880 + 0.22590i

xm = 0.20000, xf = 0.25000, n = 1.00000, τ = 0.34157, γ = 1.40000, R = −1.00000

Table 2 Base state sensitivities calculated with the four methods with N = 400.

(Tab base state.m)

ǫ
2

δ
s
F
D
−
δ
s
A
D
fo
r
a
ll

fun_travwave.m

ǫ
2

δ
s
F
D
−
δ
s
A
D
fo
r
a
ll

fun_Helm_FD.m

ǫ
2

δ
s
F
D
−
δ
s
A
D
fo
r
a
ll

fun_Helm_FE.m

ǫ
2

δ
s
F
D
−
δ
s
A
D
fo
r
a
ll

fun_Galerkin.m

Figure 3

The difference between the eigenvalue drift calculated with (i) a finite difference method with step

size ε (δsFD) and (ii) adjoint methods (δsAD). The adjoint methods are exact to first order so,
for small ε, these plots should be straight lines through the origin. This provides an excellent

debugging test for the adjoint codes, known as a Taylor Test. (Fig TT.m)

LITERATURE CITED

Magri L, Bauerheim M, Juniper MP. 2016. Stability analysis of thermo-acoustic nonlinear eigenprob-

lems in annular combustors. Part I Sensitivity. Journal of Computational Physics 325:395–410

Trefethen LN. 2000. Spectral Methods in Matlab. Philadelphia: SIAM

www.annualreviews.org • 9

LIST OF MATLAB CODES PROVIDED WITH TUTORIAL

Main codes

Tab_comparison.m Compare the eigenmodes calculated with the four methods by generating table 1 and figure 2.

Tab_base_state.m Compare the sensitivities calculated with the four methods by generating table 2.

Fig_TT.m Check that the adjoint sensitivities are exact to first order by generating figure 3.

Major functions

fun_travwave.m Calculate the eigenmode and eigenvalue sensitivities with a travelling wave method.

fun_Galerkin.m Calculate the eigenmode and eigenvalue sensitivities with a Galerkin method.

fun_Helm_FD.m Calculate the eigenmode and eigenvalue sensitivities with a Helmholtz finite difference method.

fun_Helf_FE.m Calculate the eigenmode and eigenvalue sensitivities with a Helmholtz finite element method.

fun_TT.m Calculate and plot the difference between adjoint sensitivities and finite difference sensitivities.

Minor functions

fun_param_dim.m Set the dimensional parameters of the thermoacoustic system.

fun_nondim.m Convert to nondimensional parameters.

fun_normalize.m Normalize an eigenvector, P (x), such that
∫
P 2 dx = 1.

fun_cheb.m Compute a Chebyshev differentiation matrix and gridpoints (Trefethen 2000).

fun_clencurt.m Compute the weights for a mass matrix with Clenshaw-Curtis quadrature (Trefethen 2000).

10

