
CHAPTER 9

DIMENSIONAL ANALYSIS AND SCALING

• The Philosopher’s approach

• The Mathematicians’s approach

• The Engineer’s approach

• Example - an orifice plate

• Example - an aeroplane

• Example - the drag force on a ship

• Further worked examples

1



Fluid Mechanics Matthew P. Juniper

9.1 THE PHILOSOPHER’S APPROACH

The French adopted Systéme Internationale units (metres, seconds etc.) soon after
the revolution in 1789. Most of mankind has followed suit but Nature, and some
Americans, still have no idea what a metre is. We have become so used to SI units
that we sometimes forget that, when we express things dimensionally, we add man-
made notions of length, time etc. It is much more natural to take them out. This is
the basis of dimensional analysis and the Buckingham Pi law:

For example, if we want to work out the velocity field inside a box of a given shape, we
would need to know its size, the entry velocities, and the fluid’s density and viscosity:

There are four independent variables. Hidden within these four variables, however,
there are three man-made concepts: metres, seconds, and kilograms. The philosopher
would say that, to be true to Nature, we have to remove these man-made concepts:

The control parameter is the Reynolds number. It is dimensionless so we are safe from
French intervention. If the president of France decides to change the definition of a
metre, our control parameter remains unchanged because ρV D and µ both change
by exactly the same amount.

If the flow is compressible there is another independent variable: the speed of sound.
There are then two control parameters: the Reynolds number and the Mach number.
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9.2 THE MATHEMATICIAN’S APPROACH

The Navier-Stokes equation is f = ma written for a viscous fluid. It is a partial differ-
ential equation that must be satisfied at every point in the fluid. Given certain bound-
ary conditions and the physical properties of the fluid, the equation has a unique
solution∗1:

If we have two situations that are geometrically similar (i.e. one is a scaled-up ver-
sion of the other) we can define equivalent reference lengths and reference velocities
in both situations and measure all distances in these units. In these new units, the
boundary conditions are identical but the physical properties, ρ and µ, are not.
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We want to know the condition for which the two situations have the same solution
to the Navier-Stokes equation.

1∗Actually, nobody has yet proved that the solution is unique and smooth, but we expect it to be.
There is a $1m prize for the first person to do so: http://www.claymath.org/millennium/
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We write the dimensional Navier-Stokes equations for both situations side by side.
Then we substitute in x∗, v∗ etc. from the previous page and then re-arrange to get
the non-dimensional Navier-Stokes equations for both situations:

Big square Little square
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We already know that the boundary conditions are the same. Therefore, if the Reynolds
numbers are also the same, the equations must have exactly the same solution. In other
words, the Reynolds number is the only control parameter for geometrically-similar
objects in incompressible flows (in compressible flows, the non-dimensional Navier-
Stokes equation also contains the Mach number).

This is why we can plot CD for a sphere as a function of the Reynolds number alone.
Each point on the line corresponds to a solution of the Navier-Stokes equation at a
particular Reynolds number. It will be valid for all perfectly smooth spheres.
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9.3 THE ENGINEER’S APPROACH

The engineer’s approach is firmly rooted in the philosopher’s and mathematician’s
approach. We will consider the example of a rough sphere, which introduces a new
lengthscale: the height of the bumps, ε.

Step 1 - Decide which variables you want to measure (the dependent variables) and
which variables influence the problem (the independent variables).

Step 2 - Count up the number of dimensions (mass, length, time etc.) and subtract
this from the number of variables to obtain the number of dimensionless numbers in
the problem. This is the philosopher’s approach: it must be possible to describe the
problem without any man-made constructs.

Step 3 - Create the dimensionless numbers. There are often several ways to do this
but it is best to use standard dimensionless numbers, such as the Reynolds number,
Mach number etc. These can be found in the Thermofluids data book. This is the
mathematician’s approach: the standard dimensionless numbers appear as control
parameters if you work out the dimensionless Navier-Stokes equations.

Step 4 - Create an experiment
or do a numerical calculation to
measure the dependent dimen-
sionless number as a function of
the independent control parame-
ters:
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9.4 EXAMPLE - AN ORIFICE PLATE

In chapter 6 we worked out the pressure drop across an orifice plate, ∆p, in terms
of the average velocity upstream, V , using a simple model of the flow. However, the
real flow is more complicated than that assumed by the simple model. We will need
to do experiments (or a numerical simulation) to obtain a more accurate evaluation
of ∆p as a function of V . How do we express these in a way that is easily scalable to
geometrically-similar orifice plates?

Step 1 Dependent variable Independent variables

Step 2 - count up the dimensions:

Step 3 - create the dimensionless num-
bers:

Step 4 - carry out the experiment:
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9.5 EXAMPLE - AN AEROPLANE

We want to evaluate the lift and drag coefficients of a Boeing 747 by testing a geometrically-
similar model in a wind tunnel. What conditions are required in the wind tunnel for
complete similarity? Remember that an aeroplane travels near Mach 1, so the density
of the fluid cannot be taken as a constant.

Step 1
Dependent Independent

Step 2: count up the dimensions

Step 3: create the dimensionless numbers
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Step 4 - It is easy to match the angles of attack. However, for complete similarity we
require Mm = M f and Rem = Re f :

Vm

am
=

Vf

a f
and

ρmVmDm

µm
=
ρ f Vf D f

µ f

re-arranging gives:

Vm

Vf
=

am

a f
and

Vm

Vf
=
ρ f µm

ρmµ f

D f

Dm

This is an over-constrained problem. It will not be possible to match both M and Re
without pressurising the wind tunnel to change the density. This is expensive. How-
ever, we know from experience that the Reynolds number has little influence once
it is above around 106. Therefore we match the Mach number and let the Reynolds
number float, making sure that it does not drop into the region where it could have
influence.
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9.6 EXAMPLE - THE DRAG FORCE ON A SHIP

Behind a ship there is a wave pattern that propagates energy away from the ship as
well as the normal fluid-mechanical wake associated with a body. These are surface
waves. The restoring force is gravity so it must be included in the problem. How
would we work out the drag force on a full-scale ship by performing model tests?

Step 1 - Dependent and independent variables

Step 2 - Number of dimensions

Step 3 - Create the dimensionless numbers (look in Thermofluids data book)

Step 4 - Work out conditions for complete similarity, assuming that Um is unrestricted:

U2
m

gDm
=

U2
f

gD f
and

ρmUmDm

µm
=
ρ f U f D f

µ f
⇒
µmρ f

µ fρm
=

�

Dm

D f

�3/2

Thus if the model is 1:20 scale, the ratios of the kinematic viscosities, µ/ρ must be
1:89. There are no safe, cheap fluids with such a small viscosity so we cannot force
complete similarity.
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We know that CD is some function of Re and F r only. What can we say about the
nature of this function, using physical reasoning? Are the Re effects likely to be
independent of the F r effects or not?

We know that the sea takes around a day to become calm after a storm (through the
action of viscous forces) and that a wave period is a few seconds. Therefore viscosity
can only have a very weak effect on wave motion. Furthermore, gravity can have little
effect on the normal fluid-mechanical wake associated with the body. Therefore we
treat the wave terms and the fluid-mechanical terms as independent and additive:

So we perform two separate experiments. First we test the model around the correct
Froude numbers and measure CD total . Then we measure the fluid-mechanical drag at
those Froude numbers by testing a completely submerged reflected model:

We subtract one from the other to obtain the Froude number dependence: CDwave(F r).
For large ships it can be hard to test at the correct Reynolds number because very large
velocities are required. However, we can use our knowledge from chapter 8 (external
flow) to estimate CD f luid−mech(Re) at large Re.
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