
CHAPTER 6

ONE DIMENSIONAL PIPE FLOW

• Static pressure, stagnation pressure, and total pressure

• Total pressure loss across an orifice plate

• Total pressure loss along a pipe

• Total pressure changes across pipe components

• Total pressure and mechanical work

• Network analysis

Internal Flow Systems by D. S. Miller is an excellent source of practical information
on internal flow (ISBN 0-947711-77-5 and classmark TA 379/ TA 293 in the CUED
library)
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6.1 STATIC PRESSURE, STAGNATION PRESSURE, AND TOTAL

PRESSURE

At a point in a moving fluid the static pressure, p, is the pressure measured by a probe
that does not change the speed of the flow, e.g. at point A on the diagram. The stagna-
tion pressure, p0, is that measured by a probe that lets the flow come to rest without
loss of mechanical energy, e.g. at point B on the pitot tube (there will be more detail
on this in chapter 10). The two pressures are related by Bernoulli’s equation.

The stagnation pressure is the pressure measured at a stagnation point. The total
pressure, p+ρV 2/2+ρgh, includes the height, h, measured relative to an arbitrary
datum level and is not the pressure measured at a stagnation point. In a network of
pipes we find it useful to follow the total pressure, rather like following the voltage in
an electrical network. When divided by ρg, this is also known as the head. The total
pressure is conserved if there is no loss of mechanical energy in the flow. It drops
as the flow loses mechanical energy through pipes, bends, orifice plates and other
components. It rises as the flow goes through pumps. At sufficiently high Reynolds
number the total pressure loss in each component is proportional to ρV 2/2.

When the height, h, does not change, the change in total pressure equals the change
in stagnation pressure. In sections 6.2 to 6.9, we will assume that the height does not
change through the components being considered.
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6.2 TOTAL PRESSURE LOSS ACROSS A HORIZONTAL ORIFICE

PLATE

In the pipe flow experiment an orifice plate is used to measure the flowrate. The
flowrate is calculated from the static pressure drop across the plate. The pressure
drop depends on the size of orifice, the sharpness of the edges and where the pressure
tappings are placed relative to the plate. Orifice plates are calibrated experimentally
but here we use a simple model to estimate the pressure drop. We assume that the
velocity is, on average, uniform and steady across section 1, section 3 and the central
jet in section 2.

The area of the central jet adjusts until the static pressure is uniform across the whole
of section 2. If we assume that there are no viscous losses between section 1 and
section 2 then Bernoulli can be applied along a streamline.
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(The orifice is horizontal so we can ignore height changes.) If we knew A2/A1 we
could calculate V2/V1 from conservation of mass between sections 1 and 2:
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In most situations we will not know A2/A1. However, the velocity ratio V2/V1 remains
a function only of the orifice diameter and shape so the term in brackets is a constant
that can be determined experimentally. Thus V 2

1 and the flowrate can be found by
measuring the static pressure drop p1− p2. This is the main function of orifice plates.

Between section 2 and section 3 the jet mixes turbulently. Turbulent eddies decay
to smaller and smaller eddies, which quickly lose their mechanical energy through
viscous dissipation, so Bernoulli cannot be applied. However, the steady flow mo-
mentum equation and conservation of mass can be used between these two sections∗1.

From the steady flow momentum equation, the net momentum flux equals the pres-
sure difference multiplied by the area on each side of the control volume:
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By conservation of mass, V3 is equal to V1, so the total static pressure drop is:
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The stagnation pressure drop is the same because V3 equals V1:
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The loss coefficient, K , is a function of the orifice diameter and shape. K is a constant
for flows at high Reynolds number.

1∗See Derivation 1 at the back of the handout for all the intermediate steps in this calculation
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If we repeat the analysis, accounting for height changes between 1 and 3, we must
replace (p01 − p03) in the above expression with (ptot,1 − ptot,3). The loss coefficient,
K , is tabulated or plotted in books for different orifice shapes:

6.3 TOTAL PRESSURE LOSS ALONG A PIPE

In chapter 5 we derived an expression for the pressure gradient along a pipe in terms
of the friction coefficient, c f :

dP

d x
=−

ρV 2

R
c f

If this pressure gradient is uniform then:

If the pipe has uniform cross-sectional area and the flow inside is fully-developed then
the average velocity, V , is uniform. Consequently, the stagnation pressure drop in a
horizontal pipe is exactly equal to the static pressure drop:
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In a non-horizontal pipe, we must replace p02− p01 with ptot,2− ptot,1. There are actu-
ally two definitions of the friction coefficient. The other is denoted f and is equal to
4c f . In this course we call f the friction factor although in some books it too is called
the friction coefficient.
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6.4 TOTAL PRESSURE LOSS AT A SUDDEN EXPANSION

There is a total pressure loss when the cross-sectional area of a pipe suddenly in-
creases. If we analyse∗2 this in the same way as a horizontal orifice plate we calculate
that the stagnation pressure drop is given by:
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where K is a new loss coefficient. We can compare this value of K with the experi-
mental values that are shown on the right. When height changes are included, we
must replace (p02− p03) with (ptot,2− ptot,3).

If a pipe discharges into a reservoir without a gradual expansion of the cross-sectional
area, then A3 tends to infinity and the loss coefficient, K is equal to 1.

6.5 THE PRESSURE AGAINST A WALL

Students are often surprised that the pressure against a wall is assumed to be that of
the fluid next to the wall. Some think that the pressure there should be zero.

If the wall and the fluid are at thermal equilibrium, molecules hit the wall, stick to
it for a while, and are released back into the fluid with the same energy with which
they hit the wall. Statistically, this is equivalent to replacing the wall with a fluid at
the same temperature and pressure as the fluid next to the wall. You can think of the
wall as a ‘pressure mirror’. If, instead, we were to assume that the pressure is zero at
the wall, it would be equivalent to replacing the wall with a vacuum. In other words,
all molecules would disappear on hitting the wall. This is evidently not a good model
of a wall’s real behaviour.

2∗See Derivation 2 in the back of this handout for the intermediate steps in this calculation
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6.6 TOTAL PRESSURE LOSS AT A PIPE ENTRANCE

There is a similar total pressure loss at the entrance to a pipe:

6.7 TOTAL PRESSURE CHANGES ACROSS GENERAL PIPE COM-
PONENTS

In summary, all pipe components, such as valves, junctions and bends cause a total
pressure loss. At high Reynolds number the flow is turbulent and this loss is equal to
KρV 2/2 where K is the loss coefficient. K has been measured experimentally for all
components and is tabulated in book such as Internal Flow Systems by D. S. Miller:
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6.8 PUMPS AND TURBINES

Pumps do mechanical work on a fluid and cause a total pressure rise. Turbines, on the
other hand, extract mechanical work from a fluid and cause a total pressure loss. The
exact mechanisms of this are described in the third year (3A3 Compressible Flow)
and the fourth year (Turbomachinery). There are always some losses in such systems
due to irreversibility.

6.9 TOTAL PRESSURE AND MECHANICAL WORK

A drop in total pressure in the fluid corresponds to a loss of mechanical energy by the
fluid. The mechanical energy may have been converted to internal energy through
an irreversible thermodynamic process such as viscous dissipation (see chapter 10).
Alternatively, it may have exerted shaft power, Ẇx , on its surroundings via a device
such as a turbine.

For an irreversible process, the total pressure change across a control volume is related
to the shaft power transferred from the fluid by:

ṁ

ρ
(ptotout

− ptot in
) =−Ẇx

In chapter 10 we will relate this equation, which deals with mechanical energy, to the
Steady Flow Energy Equation, which deals with both mechanical and thermal ener-
gies. For now will note that if there are any irreversibilities within the control volume,
mechanical energy is lost to thermal energy and the equation becomes:

Similarly, if mechanical shaft power is exerted on the fluid then the total pressure
rises. Again, the power exerted is equal to the volumetric flowrate multiplied by the
total pressure change.
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6.10 NETWORK ANALYSIS

In a network of pipes, we follow the total pressure through the components of the
network. This leads to an equation, or set of equations, for the unknowns in the net-
work. In the example below, we work out the power of the pump that is required to
lift water from the left tank, whose surface is 1.5 m above a datum level, to the right
tank, whose surface is at 8.5 m. Both surfaces are at atmospheric pressure, pa.

Component diameter density velocity Re K ∆ptot ∆ head
(m) (kgm−3) (ms−1) (Nm−2) (m)

pipe inlet 1.0 1000 3.50 3.2 ×106 0.1 613 0.06
pipe 1.0 1000 3.50 3.2 ×106 1.35 8270 0.84
pump - - - - - x x/ρg
valve 0.8 1000 5.47 4.0 ×106 0.5 7480 0.76
pipe 0.8 1000 5.47 4.0 ×106 12 179500 18.30
orifice 0.8 1000 5.47 4.0 ×106 0.5 7480 0.76
pipe outlet 0.8 1000 5.47 4.0 ×106 1.0 14960 1.53

(for pipes, K = 4C f L/D with c f = 3.75× 10−3)

Position Total pressure (calculation) Total pressure
(Nm−2) (Nm−2)

In left tank (V = 0) pa +ρgh= pa + 1000× 9.81× 1.5 pa + 14715
At entry to pump pa + 14715− 613− 8270 pa + 5832
At exit of pump pa + 5832+ x
In right tank (V = 0) pa + 5832+ x − 7480− 179500− 7480− 14960 pa + x − 203588
Required in right tank pa +ρgh= pa + 1000× 9.81× 8.5 pa + 83385

Equating the pressures in the right tank gives the total pressure rise in the pump:

The volumetric flowrate is 2.75 m3s−1 so the required power from the pump is:
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DERIVATION 1 - HORIZONTAL ORIFICE PLATE

From the steady flow momentum equation, the net momentum flux equals the pres-
sure difference:

A3p2− A3p3 = ṁV3− ṁV2
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V3 is equal to V1 because of conservation of mass so the total static pressure drop is:
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where the loss coefficient, K , is (1− V2/V1)2.

The total stagnation pressure drop is:
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because V1 is equal to V3.
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DERIVATION 2 - HORIZONTAL ABRUPT EXPANSION

There is a stagnation pressure loss when the cross-sectional area of a pipe suddenly
increases.

Conservation of mass:

V2A2 = V3A3 (6.1)

Steady flow momentum equation:

p2A3+ ṁV2 = p3A3+ ṁV3 (6.2)

Re-arranging equation (6.2) gives:
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Substituting equation (6.1) into this expression gives:
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The stagnation pressure drop is given by:
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Substituting equation (6.1) and equation (6.3) into this expression gives:
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