
CHAPTER 3

VISCOUS FLOW

• Solids and fluids;

• The no slip condition;

• Momentum transfer through molecular motion;

• Shear stress and viscosity;

• Couette flow;

• Poiseuille flow;

• The Navier-Stokes equation;

• Worked example: viscous pipe flow.
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3.1 SOLIDS ARE RIGID. FLUIDS FLOW

Imagine holding a brick between the palms of your hands. When you move your right
hand away from you and your left hand towards you, the forces from your hand are
transmitted through the brick. This is because the molecules in the brick have defined
positions. When displaced slightly, the inter-molecular bonds resist in a spring-like
manner. In static equilibrium, each layer experiences the same shear stress:

Now imagine that the brick is replaced with treacle. When you move your hands, the
treacle flows into a new shape. This is because the molecules do not have defined po-
sitions and cannot support a shear stress when in static equilibrium. When one layer
is displaced, they flow over each other to accommodate the displacement. There is a
shear stress, however, in the moments before mechanical equilibrium is reached. We
will soon see that it is proportional to the rate of strain, dvx/d y .

What would happen if we replaced the treacle with the inviscid fluid that we have con-
sidered so far? An inviscid fluid has perfect slip. It cannot support any shear stress at
all. It would be the perfect lubricant (if you could keep it in the desired place).1

1Inviscid fluids do actually exist. They are called superfluids. The best known example is liquid
helium-4 below 2.17 Kelvin. At these temperatures quantum mechanics needs to be taken into account
and the classical mechanics models used in this course break down.
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3.2 THE NO SLIP CONDITION AND MOMENTUM TRANSFER

Let us consider the molecules in a gas between two plates, where the top plate moves
from left to right. From experiments we find that the molecules stick to surfaces for
long enough to reach thermal equilibrium before they jump back into the gas. Conse-
quently when they leave the surface they have, on average, the same x-velocity and
the same temperature as the surface. This is the no slip condition.

The molecules that have just left the surface collide into molecules nearby. After
several collisions the extra x-momentum of the molecules coming from the top sur-
face has been diffused into adjacent layers of fluid. These in turn jostle with the
molecules adjacent to them, transferring x-momentum deeper into the fluid. Eventu-
ally x-momentum diffuses right down to the bottom plate and, averaging over all the
molecules’ velocities, one obtains a linear velocity profile. This is just like diffusion of
heat, in which one obtains a linear temperature profile.
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3.3 SHEAR STRESS AND VISCOSITY

There are too many molecules to consider each individually so we consider the fluid
as a continuum. The transfer of momentum by molecular motion then needs to be
modelled in some way. Adjacent layers of fluid exchange momentum at a rate that is
proportional to the velocity gradient. By Newton’s second law (f = ma) the rate of
change of momentum across a certain area is simply a force. When divided by the
area, this is the shear stress τ:

In a certain time and over a
certain area, some molecules
swap places

shear stress=
shear force

area

The coefficient of proportionality is the viscosity, µ: (see footnote2)

τ= µ
dvx

d y

Viscosity varies strongly with temperature because it is closely linked to molecular
motion. In gases, viscosity increases with temperature because the average molec-
ular speed increases and the momentum transfer per unit time therefore increases.
However in liquids it decreases with increasing temperature, as you can see when
you pour boiling water out of a kettle. This reflects the fact that the molecules in a
liquid do not simply bounce off each other. Instead they form temporary bonds with
each other which enhance the transfer of momentum. This bond energy becomes less
significant compared with their kinetic energy as the temperature increases.

2In this particular case vx is only a function of y so the partial derivative ∂ vx/∂ y collapses to the
ordinary derivative dvx/d y .
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For most fluids, the rate at which momentum diffuses is proportional to the velocity
gradient, just as the rate at which heat diffuses is proportional to the temperature
gradient. These fluids are called ‘Newtonian fluids’. If the molecules are long chains
or the fluid contains small suspended solids, these can align or distort with the flow
direction so the viscosity depends on the velocity gradient. These fluids are called
‘non-Newtonian fluids’.
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3.4 COUETTE FLOW

The steady incompressible viscous flow between moving plates described in the pre-
vious section is called ‘Couette flow’. There is no acceleration (see bottom of page)
so, by f= ma, the forces on a control volume must sum to zero:

In Couette flow, the pressure gradient is zero so:

From our molecular argument we know that we can model the shear stress in terms
of the viscosity of the fluid and the velocity gradient. Therefore we substitute τ =
µdvx/d y into this expression:

This has solution: vx = B y+C . The constants B and C are evaluated from the bound-
ary conditions:

Before we started we should have looked at the material derivative of velocity (i.e. the
acceleration of a fluid blob) to show that the flow is not accelerating:
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3.5 POISEUILLE FLOW

Now we consider the flow between stationary plates with a pressure gradient. The
velocity profile is obtained from a force balance on the same control volume:

dτ

d y
δ yδx −

dp

d x
δxδ y = 0

⇒
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⇒
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�

(3.1)

3.6 VISCOUS FLOW DOWN A SLOPE

A similar force balance can be performed on a steady viscous flow down a slope.
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3.7 THE NAVIER-STOKES EQUATION

The Navier-Stokes equation is the most important equation in fluid mechanics. It is
simply f= ma for a viscous fluid.

In chapter 2 we derived the Euler equation, which is f= ma for an inviscid fluid:

−∇p = ρ
∂ v

∂ t
+ρv · ∇v

When the shear stresses are included, there are extra force terms on the left hand
side. These are shown here for a Newtonian fluid such as water or air:

µ
∂ 2v

∂ x2 +µ
∂ 2v

∂ y2 +µ
∂ 2v

∂ z2 −∇p = ρ
∂ v

∂ t
+ρv · ∇v

In vector notation, this can be written as:

µ(∇ ·∇)v−∇p = ρ
∂ v

∂ t
+ρv · ∇v

which is abbreviated to:

µ∇2v−∇p = ρ
∂ v

∂ t
+ρv · ∇v

This is the Navier-Stokes equation. It is f= ma written for a viscous fluid. It is usually
written the other way round and divided by ρ :

∂ v

∂ t
+ v · ∇v=−

1

ρ
∇p+

µ

ρ
∇2v
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3.8 WORKED EXAMPLE - VISCOUS PIPE FLOW

We would like to work out the velocity profile vx(r) in a pipe of radius R with a pres-
sure gradient dp/d x . The control volume is a cylindrical shell of thickness δr and
length δx . Note that the outer surface of this shell has a larger area than the inner
surface. We assume that vx and τ only vary in the r-direction and that p only varies in
the x-direction, which means that our partial derivatives collapse to ordinary deriva-
tives.

If the flow is steady and R is constant, the forces on the fluid element must sum to
zero:

(2πrδr)p− (2πrδr)
�

p+
dp

d x
δx
�

+ 2π(r +δr)
�

τ+
dτ

dr
δr
�

δx − (2πrτ)δx = 0

Multiplying out the brackets, cancelling terms and dropping the very small (δr)2 term
gives:

−(2πrδr)
dp

d x
δx + 2πr

dτ

dr
δrδx + 2πδrτδx = 0

which reduces to:

−
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Now we substitute in τ= µdvx/dr:

−
dp

d x
+µ

d2vx

dr2 +
µ

r

dvx

dr
= 0
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As for the 2D case, we need to integrate this twice in order to find vx(r). However,
this is difficult when there are three terms. The trick is to notice that the second two
terms can be re-written as a single term:

−
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= 0

Now we integrate this, leaving in constants (A and B) instead of specifying the bounds
of the integration:
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(3.2)

⇒
∫

dvx =
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dr +

∫

B

r
dr

⇒ vx =
dp
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This is the general solution for vx . We now need to put in the boundary conditions.
The first is that the velocity gradient dvx/dr must tend to zero as r tends to zero.
From inspection of equation (3.2), this requires B = 0. The second is that vx(R) = 0,
which is the no slip condition at the pipe walls. The constant A is calculated from this
to give the solution:

vx =−
dp

d x

�

r2− R2

4µ

�

and we recognise the parabolic profile that is familiar from Poiseuille flow between
two plates.
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