
CHAPTER 1

FLUIDS AND VECTOR CALCULUS

• Picturing fluids

• The properties of fluids

• Why we use partial derivatives

• The del operator

• The gradient of a scalar field

• The law of conservation of mass

• The divergence of a vector field

• Constant density flows

• The curl of a vector field
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1.1 PICTURING FLUIDS

Fluids flow. This is because they cannot support a shear stress when in static equi-
librium.1 Fluids are made up of very many molecules2 and we can picture these
molecules as small rigid balls that obey Newton’s laws of motion. In gases, the
molecules move in straight lines between one collision and the next with a mean free
path that is much larger than the molecular diameter. In liquids, the molecules are
in close contact with their neighbours, colliding and forming temporary bonds. These
temporary bonds make some liquids difficult to model so we will consider gases first.

Given that gas molecules obey Newton’s laws, could we simulate the behaviour of a
gas by tracking the position of each molecule? In theory, we could. But how many
molecules are there in a typical container?

At all but the smallest lengthscales it would be impractical to follow every molecule.
Instead, we average3 all the molecular velocities, vi, around a point in space (x , y, z)
and say that the fluid there has a velocity v(x , y, z).

So now we can think of the fluid as a continuum, which is a continuous lump of stuff
with no gaps and say that it has a certain velocity field.

1To define ‘static equilibrium’ exactly we need to define a timescale over which we observe the
material. This is important because some materials, such as ice in a glacier, are solid over short
timescales but liquid over long timescales.

2This statement implies that we observe fluids at lengthscales very much larger than the distance
between the molecules.

3This requires a definition of average. This is v(x , y, z) = 1
N

∑N
i=1 vi , where N is the number of

molecules around that point in space and vi is the velocity vector of each molecule. The volume over
which we average much be much larger than the mean free path but much smaller than the observer’s
lengthscale.
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1.2 THE PROPERTIES OF FLUIDS

The properties of a fluid all arise from its molecular nature. The molecular mass, m,
multiplied by the number of molecules in one metre cubed, nv, gives the density, ρ.
The temperature, T , is proportional to the average kinetic energy of the molecules,
mv2

i /2. For example, if we heat up a stationary gas, the speeds of all the molecules
increase although, of course, their velocity vectors still average to zero because the gas
remains stationary. To show how useful this concept is, let’s look at the pressure on
the piston face4:

1. momentum change on collision

2. number of collisions per unit
area per unit time

pressure=
force

area
=

average rate of change of momentum

area
=

So by considering the molecular motion of the gas we can work out that p = ρRT ,
where R is the gas constant. This is the ideal gas equation of state. In a similar way,
macroscopic properties like viscosity, thermal conductivity, specific heat capacity etc.
can be worked out from the microscopic molecular motion.

The Knudsen number, Kn, is defined as the ratio of λ, the mean free path, to L,
the size of the region we are considering. The continuum model only works when we
average over very many molecules and very many collisions so it requires the Knudsen
number to be somewhat5 less than 1. Consequently the continuum model does not
work at very low pressures or for very small objects.

4For a more rigorous derivation of this, see Feynman’s lectures on physics, section 39 .
5For now, we will estimate breakdown to occur at Kn = 1, although in some situations it could

break down at smaller Kn.
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1.3 WHY WE USE PARTIAL DERIVATIVES

In our molecular picture of a fluid, every molecule has a velocity vector, vi, and obeys
Newton’s laws of motion. The velocity is held by the molecule so we use ordinary
derivatives such as d/dt. If we knew exactly how all the molecules started we could
march forwards in time solving ordinary differential equations for each molecule.
However, as metioned in section 1.1, this is impractical for more than a few million
molecules.

In our continuum picture of a fluid, the velocity field is defined at points in space rather
than on individual molecules. Newton’s laws of motion still work but we have to apply
them to regions of space rather than to individual molecules. In a three-dimensional
world we need to isolate changes in each of the three directions: (x , y, z) so we need
to use partial derivatives such as (∂ /∂ x ,∂ /∂ y,∂ /∂ z). By averaging over very many
molecules and very many collisions we exchange an enormous number of ordinary
differential equations for a few partial differential equations that describe the aver-
aged fields.

This is a crucial conceptual leap for physicists and engineers.

“The application of Newton’s mechanics to continuously distributed masses
led inevitably to the discovery and application of partial differential equa-
tions, which in their turn first provided the language for the laws of the
field-theory.”

ALBERT EINSTEIN
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1.4 THE DEL OPERATOR

When dealing with point masses, we use ordinary differential operators such as d/dt.
When dealing with fields we need to use partial differential operators such as ∂ /∂ t,
∂ /∂ x , ∂ /∂ y and ∂ /∂ z. Partial differential operators are not very useful when they
act independently; they only generate the change in one direction and, even worse,
that direction depends on the choice of coordinate system.

The real power of partial differential operators arises when they are combined to form
the del operator, which is given the symbol ∇ and is also called nabla. In Cartesian
coordinates, ∇ is defined as:

∇ ≡ êx

∂

∂ x
+ êy

∂

∂ y
+ êz

∂

∂ z
=

The operation that is represented by ∇ is independent of the coordinate system. This
means that ∇ is expressed differently in different coordinate systems. For instance, in
cylindrical polars it is:

∇ ≡ êr

∂

∂ r
+ êθ

1

r

∂

∂ θ
+ êz

∂

∂ z

In a Cartesian coordinate system, the unit vectors are the same everywhere. When ∇
acts on another vector, we do not need to worry about the effect that ∇ has on the
unit vectors because ∂ êx/∂ x , ∂ êy/∂ x etc. are all zero. (This is why the Cartesian
shorthand works for ∇).

In other coordinate systems, the unit vectors are not the same everywhere. This
means that, when ∇ acts on a vector, its effect on the unit vectors must also be taken
into account using the product rule. We encounter this in chapter 2.
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1.5 THE GRADIENT OF A SCALAR FIELD

When ∇ acts directly on a scalar field, it produces a vector that points in the direction
of steepest increase of that scalar. Its magnitude equals the gradient in that direction.
For example this weather map shows lines of constant pressure above the USA.

∇p is known as “grad p” because it gives the gradient of p at all points in the field.

∇p =







∂ /∂ x
∂ /∂ y
∂ /∂ z






p =

The vector ∇p is orthogonal to the contour lines and points in the direction in which
the pressure increases.
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1.6 THE LAW OF CONSERVATION OF MASS

You may be familiar with the law of conservation of mass in one dimension:

We can also introduce the mass flux, defined as the flow of mass per unit area per
unit time. For example, the mass flux at entry to the control volume above is:

Now we apply the same law to a volume of space. Here we apply it over depth δz
into the page and assume that vz = 0.

In a time δt, the change in mass within the volume, δM , is given by
¨

ρvxδ yδz−
�

ρ+
∂ ρ

∂ x
δx
��

vx +
∂ vx

∂ x
δx
�

δ yδz+ρvyδxδz−
�

ρ+
∂ ρ

∂ y
δ y
�

�

vy +
∂ vy

∂ y
δ y

�

δxδz

«

δt

⇒
δM

δt
=−

�

∂ (ρvx)
∂ x

+
∂ (ρvy)

∂ y

�

δxδ yδz

But M = ρδxδ yδz so the δxδ yδz cancels and, as δt tends to zero, we obtain:

∂ ρ

∂ t
=−

�

∂ (ρvx)
∂ x

+
∂ (ρvy)

∂ y

�

=−
�

∂ /∂ x
∂ /∂ y

�

·
�

ρvx

ρvy

�

=

This is the law of conservation of mass: the rate of change of mass per unit volume
(density) is the net rate at which mass flows out of the volume. This method of
deriving the formula is easy to understand physically but requires some messy maths.
There is an equivalent derivation using Gauss’ theorem.
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1.7 THE DIVERGENCE OF A VECTOR FIELD

When ∇ is dotted with a vector field a, it produces a scalar field equal to the net flux
of a out of each point in space. This is known as the divergence of the field a.

For example, we saw in section 1.6 that the quantity ρv is a vector field that represents
the mass flux. We know from the law of conservation of mass that:

∂ ρ

∂ t
=−∇ · (ρv)

If we heat up a fluid at a point in space, perhaps with a laser, its density drops at
that point – i.e. ∂ ρ/∂ t is negative – and the fluid diverges away from that point – i.e.
∇ · (ρv) is positive.

in a stationary fluid: in a uniform flow:

1. mass diverges from heated spot. 1. streamlines created at heated spot.
2. no net divergence from the stagnation point.

1.8 THE EQUATION OF STATE AND CONSTANT DENSITY FLOWS

The equation of state of a fluid gives the relationship between the density, ρ, the pres-
sure, p, and the temperature, T . There is no universal equation of state that accurately
models the properties of all fluids under all conditions. Instead, various different mod-
els are used. The most familiar model is that for an ideal gas: ρ = p/(RT ). A more
sophisticated model is the Van der Waals equation of state, which accounts for the
finite volume occupied by the molecules themselves. You can calculate ρ(p, T ) with
both models but, obviously, it makes no sense to use both densities simultaneously.
You have to choose one model and reject all the others.

In the rest of this Fluid Mechanics course, we will use the simplest possible equation
of state: ρ = constant. In other words, the density is neither a function of pressure
nor of temperature. This is the incompressible fluid model. In chapter 10, we will
determine when this is a valid model. Calculations become much easier with the
imcompressible fluid model. For example:

∂ ρ

∂ t
=−∇ · (ρv)
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1.9 THE CURL OF A VECTOR FIELD

Finally, ∇ × a is known as curl a. When ∇ is crossed with the velocity field, v, it
produces a vector whose magnitude is twice the angular velocity of the fluid at each
point in space and whose orientation is the axis of rotation at that point. This is called
the vorticity.

∇× v =







∂ /∂ x
∂ /∂ y
∂ /∂ z






×







vx

vy

vz






=

It is important to note that fluids can move along curved paths without actually ro-
tating. For instance, in a plughole vortex, only the fluid near the centre has non-zero
vorticity. The fluid blobs away from the centre move along circular paths but keep
facing in the same direction. You can test this by putting a matchstick cross onto the
surface:

Over the plughole:
• the fluid spins quickly (high

shear);
• viscous forces are strong;
• the fluid has non-zero vorticity.

Away from the plughole the cross keeps
pointing in the same direction
• low shear;
• viscous forces are weak;
• the fluid has zero vorticity.

You may have been told that Bernoulli’s equation cannot be applied across stream-
lines. This is the safe approach but it isn’t quite the whole story. In the next chapter
we will discover that Bernoulli’s equation can be applied across streamlines but only
in special cases in which there is no vorticity between the streamlines.
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