
CHAPTER 10

INTRODUCTION TO COMPRESSIBLE FLOW

• Collapsing PDEs to ODEs

• The Steady Flow Energy Equation

• The enthalpy of a fluid

• Stagnation enthalpy and stagnation temperature

• Entropy

• Viscous dissipation, entropy and irreversibility

• Transfer from thermal energy to mechanical energy

• Incompressible flows

• Stagnation pressure
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10.1 INTRODUCTION

So far we have examined incompressible flows, which have the equation of state
ρ = constant. In this chapter we will examine compressible flows, which have other
equations of state. For simplicity, we will examine perfect gases, which have the equa-
tion of state ρ = p/RT and for which cp, cv, and R are constant. We will discover
that, if the flow is incompressible, the thermodynamics can be separated from the
kinematics (the movement of the flow) and dynamics (the forces in the flow). It is
worth reviewing the 1A thermodynamics course, which covers this topic in detail.

10.2 COLLAPSING PDES TO ODES

In chapters 1 and 2 we used partial differential equations for mass (∂ ρ/∂ t = ∇ ·
ρv) and momentum (Euler’s equation) in order to evaluate the pressure and velocity
fields in three spatial dimension and one time dimension. In compressible flows, the
energy field must also be evaluated in these dimensions. This is the basis of full CFD
(Computational Fluid Dynamics) solvers.

Partial differential equations are usually impossible to solve by hand. In the rest of
this course, two special cases will be considered, both of which reduce the partial
differential equations (PDEs) to ordinary differential equations (ODEs).

One special case is unsteady flow in zero spatial dimensions. All quantities are assumed
to be uniform1 within a closed system. This quasi-equilibrium assumption means that
all the spatial derivatives are zero and therefore the time derivative ∂ /∂ t collapses to
d/dt. Alternatively, the time derivative can be replaced with a derivative with respect
to some other variable that measures progress. A further simplification is simply to
examine the start and end states of the closed system.

The other special case is steady flow in one spatial dimension. All quantities are as-
sumed uniform in two spatial dimensions and constant in time. This means that only,
say, the x-derivative is non-zero and therefore that ∂ /∂ x collapses to d/dx . The x
coordinate can then be taken to be the distance along a streamline.

1‘uniform’ means ‘having the same value at every point in space’
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10.3 THE STEADY FLOW ENERGY EQUATION (SFEE)

In a further simplification, we examine the differences between entry and exit states
of a fluid passing through a finite-size control volume. This leads to the steady flow
energy equation, which relates changes in the total energy of a fluid across a control
volume to the heat input to and work done (both shaft work and displacement work)
by the fluid within the control volume:
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We will consider each of these terms in turn. Within a perfect gas, the molecules have
an average velocity, v̄, which is called the bulk velocity. Per unit mass, the kinetic en-
ergy of this ordered motion is |v̄|2/2, which we shall write as v2/2 by defining v = |v̄|.
It is a mechanical energy.

total kinetic energy of
molecular motion

=

Much of the molecules’ energy, however, is contained in disordered motion. For a
perfect gas, the kinetic energy per unit mass of this disordered motion is the inter-
nal energy2, u. The increase in u is proportional to the increase in T according to
du= cvdT . It is a thermal energy.

The gravitational potential energy per unit mass is gz. It is a mechanical energy.

2The internal energy also includes any potential energy due to inter-molecular forces but these are
negligible in ideal gases and perfect gases
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Conceptually, we have to be careful with the term p/ρ. This term can be written pv,
where, in this paragraph, v is the specific volume, 1/ρ. In IA thermodynamics you
applied a control volume analysis to the first law for a system (§11.2 The Conservation
of Energy for a Control Volume). You saw that changes in pv are caused by displace-
ment work pδv and shaft work which, if reversible, is vδp:
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The shaft work, Wx , appears explicitly in the SFEE and it is easy to see how it affects
the energy change across the control volume. The displacement work, however, is
more subtle.

For simplicity, let us set Wx = 0 and Q = 0. The fluid in the control volume upstream
does displacement work on the fluid going into the control volume that we are looking
at. Similarly, the fluid in the control volume that we are looking at does displacement
work on the fluid going into the control volume downstream. In the absence of shaft
work, the total work done by the fluid (per unit mass) is equal to the downstream
p/ρ minus the upstream p/ρ.

With Wx = 0 and Q = 0, a reduction in p/ρ from one side of the control volume to
the other will be matched by an increase in u+ v2/2+ gz. Therefore, in loose terms,
p/ρ, which is a thermodynamic property of the fluid, can be thought of as another
mechanical energy held by the fluid.
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10.4 THE ENTHALPY OF A FLUID

The total energy per unit mass of the fluid is u+v2/2+ gz. If the p/ρ term is included
we obtain the quantity that we follow in the steady flow energy equation:
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The first two terms are thermodynamic properties of the fluid, while the second two
are kinematic properties of the flow (i.e. they relate to the position and velocity of the
fluid). For flow processes it is useful to add the first two terms together to make the
enthalpy, h. It is not an energy. It is simply the shorthand for u+ p/ρ.

10.5 STAGNATION ENTHALPY AND STAGNATION TEMPERATURE

If no heat is transferred to the fluid and no work is done on it, u+ p/ρ+ v2/2+ gz re-
mains constant. For instance, if a fluid slows to zero velocity without changing height,
all its kinetic energy of ordered motion v2/2 is transferred into enthalpy. This allows
us to define the stagnation enthalpy and stagnation temperature:

In some books, the gravitational potential energy gz is included in the stagnation
enthalpy and stagnation temperature. The stagnation temperature then includes an
extra gz/cp term and is no longer simply the temperature that is measured at a stag-
nation point. In this course, the stagnation temperature is defined as h0 = h+ v2/2
and h0+ gz is constant if no heat or work is done on the fluid.

The T ds equations give:

T ds = dh−
1

ρ
dp

Re-arranging, we discover that the pressure recovery in a flow process is related to
the enthalpy change and entropy change by:

In other words, the pressure recovery is maximized when there are no irreversibilities
in the flow - i.e. when the entropy change due to irreversibilities is zero.
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10.6 ENTROPY

In loose terms, entropy, which is given the symbol s, measures the degree of disorder
of a system. More exactly, s = k lnΩ, where k is the Botzmann constant and Ω is the
number of microstates of the system. In a fluid, Ω is the number of ways in which
all the molecules could exist, given macroscopic constraints such as its total energy
and volume. In other words, entropy measures our uncertainty about the speeds and
locations of the individual molecules in a fluid.

For illustration, let us put fluids to one side and consider instead an imaginary system
of 100 particles that have discrete energy levels.

Zero energy Energy = 1 unit Energy = 2 units

At zero energy, this imaginary system has one possible microstate: Ω = 1. When just
enough internal energy (thermal energy) is added to push one particle up one energy
level, there are 100 possible microstates: Ω = 100. When the same amount of inter-
nal energy is added again, there are 100× 100 possible states (9900 states with two
molecules up one level and 100 states with one molecule up two levels): Ω = 10,000.
The entropy increases as the internal energy increases because, with more energy, the
particles in the imaginary system can occupy more microstates.

In a fluid, the treatment is more complicated. It is covered in the 4th year course:
4A9 Molecular Thermodynamics.
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10.7 VISCOUS DISSIPATION, ENTROPY AND IRREVERSIBILITY

When there is no exchange of heat with the surroundings, the entropy within a fluid
can never decrease, but it can increase. Let us imagine a system containing two layers
of fluid, both of mass m and with bulk velocities v1 and v2. By molecular collisions
they exchange momentum and eventually come to the same bulk velocity (v1+ v2)/2.
This process, which we met in chapter 3, is known as viscous dissipation3.
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Because of this process, the kinetic energy of ordered motion has decreased. This
might seem odd because we know that there cannot be any loss of kinetic energy at
the molecular level (if there were, gases would cool down by themselves). In fact,
after the mixing, the molecules are whizzing around a little faster than they were
before and therefore the kinetic energy of disordered motion, u, has increased by the
same amount. This process increases the temperature of the fluid.

In a flow process, the kinetic energy of ordered motion is transferred to the enthalpy.
However, the stagnation enthalpy and the stagnation temperature, which both contain
the v2/2 term, remain constant.

The net result is a decrease in mechanical energy, an equal increase in thermal energy
and an increase in the degree of disorder of the system. The increase in disorder is
measured by the entropy change, which is equal to the shift in energy divided by the
temperature, T . This is an irreversible process; the increase in disorder cannot be
reversed without the surroundings taking heat from or doing work on the fluid.

This gives us another useful way to picture entropy. For a flow with a given total en-
ergy, the entropy measures the distribution between thermal energy and mechanical
energy. The lower the entropy, the greater the proportion of mechanical energy and
the greater is the potential to obtain useful work from the flow.

3You met this in section 6.4 of the 1A thermodynamics course, in which it was shown that dissipative
processes always entail a lost opportunity for doing mechanical work.
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10.8 TRANSFER FROM THERMAL TO MECHANICAL ENERGY

In section 10.7 we saw that energy can shift from mechanical to thermal through vis-
cous dissipation but that this process cannot be reversed. So is there any mechanism
that can shift energy from thermal to mechanical?

Consider heating up a point in a stationary fluid, perhaps with a laser. At that point,
the thermal energy of the fluid increases, the density drops, the fluid expands and it
does work on the surrounding fluid. Thermal energy has been transferred to mechan-
ical energy but this only happens because the density changes. Here we see the vital
role of the equation of state:

Incompressible Flows Compressible Flows (e.g. ideal gas)

ρ = constant ρ = p/RT

In an incompressible flow, the thermal field cannot affect the mechanical field. This
makes incompressible flows much easier to analyse than compressible flows. We re-
turn to this point in section 10.10.

On the other hand, much of the Thermodynamics course is devoted to clever and
efficient ways to transfer thermal energy to mechanical energy with compressible
working fluids. Indeed, this was the motivation for the origin of Thermodynamics in
the 18th century.
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10.9 INCOMPRESSIBLE FLOWS

If the density is assumed to be constant, there is no mechanism by which the thermal
energy can shift to mechanical energy. In other words, the thermal field, which is
measured by temperature, cannot affect the mechanical fields such as velocity and
pressure. Energy can still shift from mechanical to thermal, via irreversible processes
such as viscous dissipation, but this is determined entirely by the mechanical field4.

We must, however, determine when it is valid to assume that a flow is incompress-
ible. Let us imagine a perfect gas (with temperature T and velocity v) as its velocity
changes. Ignoring the gravitational term gz, its stagnation enthalpy is h+ v2/2. If no
heat or work is exchanged with the surroundings then incremental changes in T and
v are related by:

h+ v2/2= const ⇒ dh+ vdv = 0 ⇒

If the fluid’s velocity changes without any viscous dissipation, for example by moving
through a pressure gradient, the entropy remains constant. In such an isentropic
process, Tρ1−γ is a constant:

Tρ1−γ = const

⇒
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But we know that cpdT + vdv = 0 so substituting for dT and using the relation
cp(γ− 1) = γR gives:
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This expression shows us that, in a perfect gas, the density change is very small in
steady flows at low Mach number. The same is true for non-perfect gases and for
liquids, although it is not formally shown here. In liquids, the speed of sound is so
large that almost all liquid flows can be assumed to be incompressible. In gases we
need to be more careful:

Speed (mph) Speed (m/s) M
Bike
Car
Train
Aeroplane

4unless we allow viscosity to be a function of temperature, but this is a small detail
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10.10 STAGNATION PRESSURE

In a compressible flow, the stagnation temperature (section 10.5) is a measure of the
total energy of the fluid5 (i.e. thermal and mechanical). The stagnation pressure,
is a measure of only the mechanical energy of the fluid. If no heat is transferred or
work done on a fluid, the stagnation temperature remains uniform throughout. On
the other hand, the stagnation pressure reduces if there are irreversibilities in the flow
because mechanical energy is lost to thermal energy.

In an incompressible flow, the thermal field cannot affect the mechanical field and we
only need to consider the stagnation pressure. The Steady Flow Energy Equation then
decouples into a mechanical energy equation and a thermal energy equation:
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We have already met the mechanical energy equation in the pipe network analysis
of chapter 6. You also met it in section 13.2 of the 1A thermodynamics course. If
the flow is incompressible and irreversible and Wx = 0, the SFEE applied along a
streamline reduces to Bernoulli’s equation:

5Remember that we did not include the gravitational potential energy gz in this definition because
we want ‘stagnation temperature’ to mean ‘the temperature at a stagnation point’.
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