
Lock-in and quasiperiodicity in hydrodynamically self-excited flames:
experiments and modelling

Larry K.B. Lia,∗, Matthew P. Junipera

aEngineering Department, Cambridge University, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom

Abstract

In this experimental study, we apply acoustic forcing to a range of jet diffusion flames, motivated by the study
of how thermoacoustic oscillations interact with hydrodynamic oscillations. These flames have regions of absolute
instability at their base and this causes them to exhibit self-excited oscillations at discrete natural frequencies. We
apply the forcing around these frequencies, at varying amplitudes, focusing on the response near lock-in. We then
model the system as a forced van der Pol oscillator.

Our results show that, contrary to some expectations, a hydrodynamically self-excited flame oscillating at one
frequency is sensitive to forcing at other frequencies. When forced at low amplitudes, the flame responds at both
frequencies as well as several nearby frequencies, indicating quasiperiodicity. When forced at high amplitudes,
however, it locks into the forcing. The critical forcing amplitude required for lock-in increases both with the strength
of the instability and with the deviation of the forcing frequency from the natural frequency. Qualitatively, these
features are accurately predicted by the forced van der Pol oscillator. There are, nevertheless, two features that are
not predicted. First, when forced above its natural frequency, the flame is more susceptible to lock-in than when it
is forced below its natural frequency. Second, once the flamelocks in, its oscillations are weaker than those of the
unforced flame. This last finding suggests that, for thermoacoustic systems, lock-in may not be as detrimental as it is
thought to be.
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1. Introduction

In the analysis of thermoacoustic systems, a flame
is usually characterised by the way its heat release re-
sponds to acoustic forcing. This response depends on
the hydrodynamic stability of the flame. Some flames,
such as a premixed bunsen flame, are hydrodynami-
cally globally stable. They respond only at the forcing
frequency. Other flames, such as a jet diffusion flame,
are hydrodynamically globally unstable. They oscillate
at their own natural frequencies and are often assumed
to be insensitive to low-amplitude forcing at other fre-
quencies [1].

If a hydrodynamically globally unstable flame really
is insensitive to forcing at other frequencies, then it
should be possible to weaken thermoacoustic oscilla-
tions by de-tuning the frequency of the natural hydro-
dynamic mode from that of the natural acoustic modes.
This would be very beneficial for industrial combustors.

1.1. Hydrodynamic global instability
Hydrodynamic global (or ‘self-excited’) oscillations

can be found in both reacting and non-reacting flows.

∗Corresponding author
Email address: lkbl2@cam.ac.uk (Larry K.B. Li)

Examples include flickering of candle flames [2],
bulging of jet diffusion flames [3], bulging of low-
density jets [4], and vortex shedding in bluff-body
wakes [5]. Such oscillations are termed ‘hydrody-
namic’ because they arise from hydrodynamic mecha-
nisms. In the above cases, for instance, they arise from
inflexion points in the cross-stream profiles of axial ve-
locity and become increasingly unstable as the density
gradient steepens in the opposite direction to the veloc-
ity gradient [6].

In a jet diffusion flame, the heat release changes the
density profile and hence the velocity profile through
the action of buoyancy [7, 8]. Crucially, the inflexion
point in the shear layer just outside the flame coincides
with a steep density gradient in the opposite direction
to the velocity gradient, making it absolutely unstable
[7]. This causes a hydrodynamic global mode, which
stretches the flame and modulates the heat release in
synchronisation [9].

In this paper, we test and refute the assumption that
hydrodynamically self-excited flames are insensitive to
forcing. We do this by acoustically forcing a range of
jet diffusion flames. We control the strength of their
global instability by changing the coflow velocity and
the fuel composition. For each flame, we examine the
forced response over a range of frequencies (not just
at the forcing frequency) and discover much richer be-
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haviour than that which is reported in the literature. We
then show that this behaviour is similar to that of a
simple model: the forced van der Pol oscillator [10].
As well as providing new insight into the way acous-
tic oscillations interact with hydrodynamic oscillations,
this paper provides a useful tool for describing and
analysing such interactions.

2. Methodology

2.1. Experimental

The experiments are performed on a round coaxial
injector1 with jet diffusion flames created from mix-
tures of methane and nitrogen. The flames are forced
sinusoidally by a loudspeaker mounted upstream, over
a range of frequencies (7≤ f f ≤ 35 Hz)2 around the
natural global frequency,fn.

The forcing amplitude,A, is measured using the two-
microphone method [11]. It is defined, at the injector
plane, as the amplitude of the velocity perturbation at
f f normalised by the bulk jet velocity:A ≡ |u′1, f f

|/U1.
At each f f , A is incrementally increased to 0.90, even
though lock-in often occurs earlier3. Lock-in is de-
fined as being whenfn locks into f f , leaving no sign of
the natural global mode in the power spectral density
(PSD). This is a qualitative change, which is easy to
identify. The critical forcing amplitude at which lock-
in occurs,Aloc, is found by inspecting the PSD.

The flame response is measured using a high-speed
camera (Phantom V4.2) via broadband chemilumines-
cence at 180 frames s−1. The intensity in each frame is
summed across every pixel column, generating a time
series (five pixel rows in height) at each axial station,
I (x/d1). In this paper, however, only one axial station,
x/d1 = 10, is examined. This station is chosen for three
reasons: (i) it is just far enough downstream that the
chemiluminescent emission leads to a reliable signal-
to-noise ratio without saturation; (ii) it is sufficiently
far downstream that the global mode (if one exists) has
time to grow and interact with the forcing; but (iii) it
is not so far downstream that it coincides with the lo-
cation of vortex roll up, where the strain rates can be
high enough to cause local flame extinction, especially
if high forcing amplitudes are used.

Two methods are used to control the strength of the
hydrodynamic global instability. In the first, coflow
air is added around the flame base. This reduces the
shear and advects perturbations downstream, both of
which weaken the instability. In the second, the relative
concentrations of methane and nitrogen are changed.
Reducing the methane concentration, for example, in-
creases the stoichiometric mixture fraction. This causes

1Inner diameter,d1 = 6 mm; outer diameter,d2 = 30 mm.
2The f f increment is 1 Hz, except iffn is more than 0.25

Hz from an integer frequency value, in which case an addi-
tional setting, at the 0.5 Hz increment, is used.

3The A increment is usually 0.20, but is reduced to 0.050
around lock-in and to 0.025 if lock-in occurs atA < 0.10.

the flame to shift towards the jet centreline, closer to the
shear layer. The resultant changes to the density and
velocity profiles are such that the flame becomes less
unstable [12].

2.2. Modelling
The forced flame dynamics is modelled using the

forced van der Pol (VDP) oscillator. As in the exper-
iments, the forcing is sinusoidal (right hand term):

ẍ − ǫ(1− x2)ẋ + x = Avdp sin(ω f t), (1)

whereAvdp is the forcing amplitude andω f is its an-
gular frequency. The parameterǫ, which controls the
degree of self-excitation and nonlinear self-limitation,
is fixed at an arbitrary small value of 0.1. The natu-
ral angular frequency,ωn, is 1. Equation (1) is solved
numerically using a fourth-order Runge–Kutta method.
This is done for a range of forcing frequencies (0.3 ≤
ω f ≤ 2.5) and amplitudes (0≤ Avdp ≤ 0.4) in order to
replicate the experimental conditions.

3. Results

3.1. Experimental

Six different flames are studied (table 1): five glob-
ally unstable and one globally stable. For each flame,
the total flow rate of the reactants is fixed at 5×10−5

m3 s−1, giving a jet velocity ofU1 = 1.77 m s−1.
The globally unstable flames (Flames 1–5) all have

similar natural frequencies: 12.5≤ fn ≤ 14.7 Hz. Fig-
ure 1 shows an image sequence of Flame 5 oscillat-
ing through one unforced cycle. The globally stable
flame (Flame 6) has two natural frequencies, 14.8 and
16.1 Hz, when unforced. These, however, are replaced
by a lightly damped global mode, atfn = 14.3 Hz,
whenever forcing is applied, however small the ampli-
tude and even if its frequency is far fromfn.

3.1.1. Before lock-in
First we examine the forced response before lock-

in. We focus on Flame 5 because it exhibits most
clearly the dynamics common to all five globally un-
stable flames. Forf f (at 16 Hz) slightly abovefn, Fig.
2a shows time traces of the intensity at five forcing am-
plitudes: 0.025 ≤ A ≤ 0.30. For comparison, a time
trace of the same signal from the same flame but with-
out forcing is also shown (bottom). The corresponding
PSD curves are shown in Fig. 2b.

When unforced, the flame has a global mode at a
discrete natural frequency, represented in the PSD by
a sharp peak atfn = 14.7 Hz. There are similar, but
weaker, peaks at the harmonics. The presence of har-
monics indicates that the natural varicose oscillation of
the flame is not perfectly sinusoidal.

When forced at a low amplitude (A = 0.025), the
flame responds atf f as well asfn. Around these two
frequencies, there are multiple spectral peaks. Known
as sidebands, they are caused by nonlinear interactions
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between the natural mode and the forcing. Their pres-
ence suggests that the flame is quasiperiodic, behaving
like a typical forced oscillator before lock-in4.

Additional spectral peaks arise at low frequencies,
f < 3 Hz. Among these, the highest corresponds to the
beat frequency:| f f − fn|. In the time traces (Fig. 2a),
this beating phenomenon can be seen as low-frequency
(long-wavelength) modulations of the signal amplitude.

As A increases from 0.025 to 0.050,fn shifts towards
f f , which remains fixed. OnceA reaches a critical value
of 0.075, the natural mode locks into the forcing: the
PSD becomes dominated byf f and its harmonics (i.e.
2 f f , 3f f ,...), with no sign of the original natural mode.
The PSD of the locked-in flame looks similar to that of
the unforced flame, except that the dominant frequency
is f f . (Lock-in can also occur forf f < fn. For brevity,
however, these results are not shown.)

The flame response at other forcing frequencies can
be examined in the consolidated PSD: a contour plot of
the PSD with the response frequency on the horizontal
axis andf f on the vertical axis. Fig. 3 shows this for
Flame 5 forced atA = 0.10. The natural mode is in-
dicated by a contiguous stripe that runs vertically atfn

through all values off f except those to which the flame
is locked in. Its second (2fn) and third (3fn) harmonics
are similarly indicated. At lock-in, the forcing dom-
inates and the response therefore consists of a stripe
along the diagonal forf f = fn. Although not shown,
the f f band in which lock-in occurs expands vertically
asA increases (to be discussed in§3.1.2).

Away from lock-in, the nonlinear interactions be-
tween the natural mode and the forcing give rise to
spectral peaks at low frequencies as well as aroundf f

and fn (especially if the two are close). Further inter-
actions occur betweenf f and the harmonics offn, but
not vice versa. The result is that between the vertical
stripes markingfn and its harmonics, there are spectral
peaks set in a distinctive diamond pattern.

The above dynamics can be understood more eas-
ily by inspecting phase portraits and Poincaré maps. A
phase portrait is a three-dimensional plot of the system
motion (here the flame intensity) against that same mo-
tion shifted by a time delay, and by two time delays.
A two-dimensional slice through that set of trajectories
gives the Poincaré map. The Poincaré maps for Flame
5 forced at the conditions of Figs. 2a and 2b are shown
in Fig. 2c. For clarity, these maps are cropped such that
only half the (symmetrical) slice is shown.

For the unforced flame, the phase trajectory is
closed, indicating that the flame oscillates periodically
at a limit cycle (of fn). A half-section of this trajec-
tory contains data points scattered around one blob. If
the system were free of noise, the trajectory would be
perfectly closed and the cropped Poincaré map would
show one discrete point.

As A increases, the phase trajectory follows the sur-
face of a torus. In the cropped Poincaré map, this is

4In many dynamical systems, quasiperiodicity tends to
arise when a self-excited oscillator is driven at a low ampli-
tude and at a frequency that is not a rational multiple of the
natural frequency.

seen as a ring. The appearance of a torus-like surface
is characteristic of quasiperiodicity. For weak forcing
(A = 0.025–0.050), the rings increase in size asA in-
creases. For strong forcing (A = 0.075–0.30), they
close again to another limit cycle, this time atf f . The fi-
nal limit cycle resembles the one for the unforced flame.

These results show that a self-excited flame responds
to forcing in a manner more complicated than that
which is expected from the literature. Before lock-in,
the flame responds not only at its natural frequency,
but also at the forcing frequency and at several other
discrete frequencies. For combustion systems, this im-
plies that thermoacoustic oscillations cannot be weak-
ened simply by de-tuning the flame’s natural frequency
from the combustor’s acoustic frequencies. In fact, the
flame response at other frequencies may excite other
acoustic modes.

3.1.2. Lock-in
Next we examine the forced response at lock-in. We

start by considering the relationship between the min-
imum forcing amplitude required for lock-in,Aloc, and
the normalised forcing frequency,f f / fn. This is shown
in Fig. 4 for all six flames. The diagonal lines through
the data aroundf f / fn = 1 are linear fits. For lock-in
around the fundamental, the data atf f / fn < 1 are re-
gressed separately from the data atf f / fn > 1. For lock-
in around the subharmonic, the data are not regressed
at all because the trends do not fit a linear model.

Several features are shared by all six flames. When
f f is close to fn or fn/2, Aloc is low. When f f is far
from fn and fn/2, Aloc is high. Around the fundamen-
tal, Aloc increases in proportion to| f f − fn|, indicating
a Hopf bifurcation to a global mode. This linear rela-
tionship gives rise to∨-shaped curves, similar to those
found for other self-excited flows [4, 5, 13, 14]. For
each flame, despite strong forcing (A = 0.90), there is
a limit to how far f f can deviate fromfn before lock-in
is not possible: f f / fn ≈ 1.2–1.4. Around the subhar-
monic, the relationship betweenAloc and| f f − fn| is not
as linear as that around the fundamental, although the
overall trends are similar.

Several differences exist between the six flames. As
noted in§2.1, adding coflow weakens their global in-
stability, which should make them more receptive to
forcing, enabling lock-in to occur at lowerA. Such be-
haviour is indeed observed when Flame 1 is compared
to Flame 2, and when Flame 4 is compared to Flame
5. The flames with coflow (Flames 2 and 5) lock in
more readily than do their counterparts without coflow
(Flames 1 and 4). This is seen not only forf f aroundfn

but also forf f on the high-frequency side offn/2.
Another way to weaken global instability is to reduce

the fuel concentration. According to Fig. 4, reducing
[CH4] from 100% (Flame 1) to 80% (Flame 3) to 60%
(Flame 4) has only a small effect on Aloc. Although
the curves seem to shift downwards, the change is so
small that it is within experimental uncertainty. Reduc-
ing [CH4] further to 40% (Flame 6), however, causes
a marked decrease in the slopes of the∨-shape. These
findings suggest that the flame with a weak global mode
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(Flame 6) locks in more readily than do the flames with
strong global modes (Flames 1, 3, and 4).

A final observation concerns the asymmetry of the
lock-in curves aboutfn: lock-in occurs more readily for
f f / fn > 1 than it does forf f / fn < 1. This asymmetry
is more pronounced for the flames with coflow (Flames
2 and 5) than for those without coflow (Flames 1, 3, 4,
and 6). As we will show in§3.2, simple model equa-
tions, such as the VDP oscillator, have symmetric lock-
in curves, which means that this asymmetry is a feature
of the flow, and not a feature of lock-in. Previous work
has shown that when there is competition between two
modes at different frequencies, one will take over and
saturate nonlinearly before the other [15]. A possible
explanation of asymmetric lock-in is that forcing ap-
plied at higher frequencies induces higher peak acceler-
ations at the flame base. In isothermal jets, higher peak
accelerations have been found to promote vortex-ring
formation [16]. Forcing at higher frequencies could
therefore cause toroidal vortices to roll up earlier, per-
haps closer to the injector. If the vortices caused by the
forcing roll up before the vortices caused by the natu-
ral global mode, they will dominate, increasing the ten-
dency of the flame to lock in.

The fact that lock-in occurs asymmetrically suggests
that there may be other asymmetries between forcing
above and belowfn. To investigate this, we show in
Fig. 5 contours of the flame response as a function ofA
and f f / fn. As before, the focus is on Flame 5 because
it is representative of the globally unstable flames. The
flame response, measured atx/d1 = 10, is defined as the
ratio of the root-mean-square (RMS) intensity fluctua-
tion with forcing to the same quantity without forcing:
I′rms, f or/I

′
rms, un f . Also shown on the figure are selected

data from Fig. 4 indicating the onset of lock-in.

As A increases forf f / fn slightly above 0.5 or 1 (Fig.
5), the response first decreases below unity, reaches
a minimum near the onset of lock-in (circular mark-
ers), and then increases back towards unity. Forf f / fn

slightly below 1, however, the response increases above
unity and then saturates. Forcing very close to the fun-
damental causes a response that is between these two
extremes. Forf f / fn > 1.36, lock-in is not possible
even at highA. Instead, over a wide band of forcing
frequencies (1.36< f f / fn < 2.38), increasingA causes
a gradual rise in the response above unity, which peaks
at A ≈ 0.30− 0.50 before decreasing for higherA.

In summary, lock-in occurs most readily for flames
with weak global instability and whenf f is close to
fn, both of which were expected. It was not expected,
however, that the lock-in behaviour would depend on
whether f f is above or belowfn. When forced below
fn, the flame is more resistant to lock-in, but, once it
does, its oscillations are stronger than those of the un-
forced flame. When forced abovefn, the flame is less
resistant to lock-in, but, once it does, its oscillations are
weaker than those of the unforced flame. The last re-
sults suggest that, for thermoacoustic systems, lock-in
may not be as detrimental as it is thought to be.

3.2. Modelling
For the VDP oscillator, we consider a case in which

the forcing frequency is slightly above the natural fre-
quency:ω f /ωn = 1.03. Time traces of the steady-state
solution are shown in Fig. 6a for five forcing ampli-
tudes (0.05 ≤ Avdp ≤ 0.13) and for the unforced case.
The corresponding PSD curves are shown in Fig. 6b.
These figures are analogous to those for the flame (Fig.
2).

The forced response of the VDP oscillator is qualita-
tively similar to that of the flame. When unforced, the
VDP oscillator has a dominant natural frequency, rep-
resented in the PSD by a sharp peak atωn = 1. There
are, however, no harmonics because the solution is per-
fectly sinusoidal.

When forced at a low amplitude (Avdp = 0.05), the
VDP oscillator responds atω f as well asωn, with mul-
tiple spectral peaks arising between these two frequen-
cies. This suggests that, like the flame, the VDP oscil-
lator is quasiperiodic before lock-in.

As Avdp increases from 0.05 to 0.10,ωn shifts to-
wardsω f , which remains fixed. The spectral peaks
aroundωn andω f become closer and their envelope
widens. At Avdp = 0.112, that envelope has a subtle
bias towards frequencies belowωn, as evidenced by the
more marked tail. OnceAvdp reaches a critical value
of 0.115, the VDP oscillator locks into the forcing, in
much the same way as the flame does.

The similarities between the VDP oscillator and the
flame are also apparent in the Poincaré maps (Fig. 6c).
When unforced, the solution starts off as a limit cycle,
but becomes quasiperiodic asAvdp increases towards
lock-in. After lock-in, it converges to a new limit cy-
cle and the phase trajectory converges to a new orbit.

The consolidated PSD (Fig. 7) resembles the analo-
gous plot for the flame (Fig. 3). The vertical stripe is
the response of the natural mode. When forced around
ωn, however, that response locks into the forcing, rep-
resented by the diagonal stripe. There is no diamond
pattern because the VDP oscillator is sinusoidal.

The lock-in map is shown in Fig. 8, withAloc

indicated by circular markers. The greyscale is the
VDP response, defined as the RMS of the forced so-
lution normalised by that of the unforced solution:
x′rms, f or/x

′
rms, un f . This response decreases below unity

asAvdp increases towards lock-in, regardless of whether
ω f is above or belowωn. At lock-in, it reaches a min-
imum, and its value decreases asω f deviates fromωn.
The lock-in curve is∨ shaped and symmetric aboutωn.
Although many of these features are observed in the
flame, two are not: (i) the flame response at lock-in
is above (not below) unity whenf f < fn; and (ii) the
flame’s lock-in curve is not symmetric aboutfn.

4. Conclusions

We have applied acoustic forcing to a range of jet
diffusion flames. These flames are hydrodynamically
self-excited and thus oscillate at discrete natural fre-
quencies. We applied the forcing around these frequen-
cies, at varying amplitudes, in order to study how they
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respond before and after lock-in. We then modelled that
response with the forced VDP oscillator.

Contrary to expectations, our results show that a
hydrodynamically self-excited flame oscillating at one
frequency is not insensitive to forcing at other fre-
quencies. When forced at low amplitudes, it responds
at both frequencies, and there is beating, indicating
quasiperiodicity.

As the forcing amplitude increases, the flame eventu-
ally locks into the forcing. Weakening the global insta-
bility – by adding coflow or by diluting the fuel mixture
– causes the flame to lock in at lower forcing ampli-
tudes. The critical forcing amplitude required for lock-
in increases as the forcing frequency deviates from the
natural frequency. This increase is linear, giving rise to
a∨-shaped lock-in curve.

The lock-in curve has two subtle asymmetries about
the natural frequency. First, a lower forcing ampli-
tude is required for lock-in when the forcing frequency
is above the natural frequency. Second, the flame re-
sponse at lock-in is weaker than the unforced response
when the forcing frequency is above the natural fre-
quency, but is stronger than the unforced response when
the forcing frequency is below the natural frequency.

Many of these features could be modelled with the
forced VDP oscillator. They include (i) the coexistence
of the natural and forcing frequencies before lock-
in; (ii) the presence of multiple spectral peaks around
these competing frequencies, indicating quasiperiodic-
ity; (iii) the occurrence of lock-in above a critical forc-
ing amplitude; (iv) the∨-shaped lock-in curve; and (v)
the reduced broadband response at lock-in. There are,
however, some features that could not be modelled.
They include (i) the asymmetry of the forcing ampli-
tude required for lock-in; and (ii) the asymmetry of the
flame response at lock-in.

Our results have conflicting implications for ther-
moacoustics. On one hand, they show that a flame’s
response at the forcing frequency cannot be eliminated
simply by ensuring that it has a hydrodynamically self-
excited mode at another frequency. In fact, the flame re-
sponds at several different frequencies, potentially ex-
citing other acoustic modes in the combustor. On the
other hand, our results also show that a flame’s re-
sistance to lock-in can be enhanced by strengthening
its global instability. In industry, this behaviour could
be exploited by imparting strong global instability to
the flame and ensuring that its oscillation frequency is
tuned away from the natural acoustic frequencies of the
combustor.
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Figure 2: (a) Time trace, (b) PSD, and (c) Poincaré map of theintensity from Flame 5 forced at a fre-
quency,f f = 16 Hz, slightly above the natural frequency,fn = 14.7 Hz. The data shown are for five forcing
amplitudes, 0.025≤ A ≤ 0.30, and for the unforced case. The onset of lock-in occurs at Aloc = 0.075.
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Figure 6: (a) Time trace, (b) PSD, and (c) Poincaré map of theVDP oscillator forced at a frequency,
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tudes, 0.05≤ A ≤ 0.13, and for the unforced case. The onset of lock-in occurs at Aloc = 0.115. This figure
can be compared to Fig. 2, which is for a self-excited flame.
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Table 1: Flow conditions of the six flames under
investigation. GU, globally unstable; GS, glob-
ally stable;U2/U1, coflow velocity relative to jet
velocity; fn, natural global frequency.

Flame [CH4] [N2] U2/U1 fn [Hz]
1 6 1.00 0.00 0 12.5
2 1.00 0.00 0.083 13.9
3 GU 0.80 0.20 0 13.0
4

?

0.60 0.40 0 13.3
5 0.60 0.40 0.083 14.7
6 GS 0.40 0.60 0 14.3a

aThis is for the lightly damped global mode, which arises

only with forcing. When unforced, Flame 6 is globally stable,

with two weak modes at 14.8 and 16.1 Hz.

Figure 3: Consolidated PSD for Flame 5 forced at
A = 0.10.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised forcing frequency, ff/fn

F
o
rc

in
g

a
m

p
li
tu

d
e

fo
r

lo
ck

-i
n
,
A

lo
c

 

 

Flame 1 (100% CH
4
)

Flame 2 (100% CH
4
 with coflow)

Flame 3 (80% CH
4
)

Flame 4 (60% CH
4
)

Flame 5 (60% CH
4
 with coflow)

Flame 6 (40% CH
4
)

Figure 4: Lock-in map for CH4–N2 jet diffu-
sion flames. The diagonal lines through the data
around f f / fn = 1 are linear fits. The error bars
denote the increment by which the forcing ampli-
tude is varied.
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Figure 5: Response of Flame 5 as a function of
forcing amplitude and frequency. The circular
markers denote the onset of lock-in.

Figure 7: Consolidated PSD for VDP oscillator
forced atAvdp = 0.30. This figure can be com-
pared to Fig. 3, which is for a self-excited flame.
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Figure 8: Response of VDP oscillator as a func-
tion of forcing amplitude and frequency. The cir-
cular markers denote the onset of lock-in. This
figure can be compared to Fig. 5, which is for a
self-excited flame.
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