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Abstract

We perform 7000 experiments at 175 stable operating points on an electrically-

heated Rijke tube. We pulse the flow and measure the acoustic response with

eight probe microphones distributed along its length. We assimilate the ex-

perimental data with Bayesian inference by specifying candidate models and

calculating their optimal parameters given prior assumptions and the data. We

model the long timescale behaviour with a 1D pipe flow model driven by natural

convection into which we assimilate data with an Ensemble Kalman filter. We

model the short timescale behaviour with several 1D thermoacoustic network

models and assimilate data by minimizing the negative log posterior likelihood

of the parameters of each model, given the data. For each candidate model we

calculate the uncertainties in its parameters and calculate its marginal likelihood

(i.e. the evidence for that model given the data) using Laplace’s method com-

bined with first and second order adjoint methods. We rank each model by its

marginal likelihood and select the best model for each component of the system.

We show that this process generates a model that is physically-interpretable,

as small as possible, and quantitatively accurate across the entire operating

regime. We show that, once the model has been selected, it can be trained on

little data and can extrapolate successfully beyond the training set. Matlab

code is provided so that the reader can experiment with their own models.
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1. Introduction

The Rijke tube was one of Shon Ffowcs-Williams’ demonstrations in his

course on acoustics, which was given to the Engineering undergraduates at

Cambridge University in the 1990’s (Fig. 14 of [1]). An electrical heater is

placed in the bottom half of a vertical tube, underneath which is a loudspeaker.5

When the heater is switched on, the tube begins to hum. When the loudspeaker

is switched on, the humming stops. To the students, of which M. Juniper was

one, it is a remarkable demonstration that noise can beget silence. To Shon

Ffowcs-Williams, it was the big reveal for his lecture on the applications of

anti-sound [1].10

This application of anti-sound is now called feedback control of thermoacous-

tic oscillations, as implemented for example by Shon Ffowcs-Williams students

Ann Dowling [2] and Maria Heckl [3]. Since the 1990’s the simple phase shift

controller has been upgraded to robust model-based control, adaptive control,

and model-based active control. Feedback control has been achieved in practice15

at full scale [4, 5], activated through fuel modulation rather than a loudspeaker.

It has not, however, been implemented routinely in industry because actuators

would have to operate for several years, typically at 100 to 1000 Hz, without fail-

ing. Failure would risk thermoacoustic oscillations in O(100) MW ground-based

gas turbines or O(10) MW aircraft engines, which could be catastrophic.20

The trepidation towards feedback control of thermoacoustic oscillations in

practical devices has motivated the search for passive control mechanisms [4].

An effective mechanism, which is widely-used in practice, is to fit acoustic

dampers such as acoustic liners or Helmholtz resonators. Helmholtz resonators

can, if space allows, be retro-fitted after an engine has been designed in order to25

damp modes identified in full engine tests. However, they add weight and an-

other failure mode. The ideal scenario is therefore to manufacture a device that

2



is linearly stable across the entire operating regime without having to retro-fit

Helmholtz resonators or to avoid particular operating regimes. The design of

such a device can exploit the fact that the behaviour of thermoacoustic systems30

is exceedingly sensitive to small design changes [6], meaning that it may well be

possible to stabilize all modes with small changes. In engines that cannot be

fitted with Helmholtz resonators, small stabilizing design changes have always

been discovered, albeit after extensive full-scale testing [7]. The challenge is to

find these small changes during the early design phase, while also satisfying the35

primary requirements for high combustion efficiency, low pollution, and high

altitude relight.

Gradient-based optimization combined with adjoint methods provide an effi-

cient way to converge to stable designs [8, 9]. This requires, however, a quantita-

tively accurate model of the thermoacoustic behaviour of the system. Devising40

such a model is particularly challenging because the sensitivity mentioned above

usually introduces significant systematic error into models and their parameters.

Although it is possible to create qualitatively-accurate thermoacoustic models,

it is therefore difficult to create a quantitatively-accurate model of a particular

system, even from quantitatively-accurate models of its components [10]. For45

example, a highly detailed model of thermoacoustic oscillations of an electric

heater in a tube [11], despite being carefully tuned to be quantitatively correct

at one heater position, was only qualitatively correct at nearby heater positions

[11, Figs. 5-5 to 5-8]. For large devices, accurate prediction of thermoacoustic

behaviour is similarly challenging [12].50

The solution proposed here is to combine physics-based modelling of the Ri-

jke tube [3, 11, 13, 14] with statistical inference from thousands of experimental

observations [15]. The remarkable recent success of data-driven approaches lies

in their relentless focus on data, rather than on models, correlations, and as-

sumptions that the research community has become used to. Rather than throw55

away these models entirely, however, we devise qualitatively-accurate physics-

based candidate models of the components of a thermoacoustic system and then

rigorously (i) tune their parameters by assimilating data from experiments; (ii)
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quantify the uncertainties in each model’s parameters; (iii) quantify the evi-

dence (the marginal likelihood) for each model; (iv) select the best model and60

(v) repeat for the next component until the model of the thermoacoustic system

is complete. We use Laplace’s method [15, 16] combined with adjoint methods

to first and second order [17, 18], which is technically more difficult to imple-

ment than methods such as Markov Chain Monte Carlo, but is thousands of

times faster, meaning that we can compare dozens of candidate models. This65

paper is an extension of a conference paper [19] and Matlab code is provided so

that the interested reader can extend this study to new models [20].

Shon Ffowcs-Williams’ vertical Rijke tube provides an ideal demonstration of

the application of physics-based Bayesian inference to develop a quantitatively-

accurate thermoacoustic model. On the one hand, a hot wire Rijke tube is easy70

to automate, meaning that thousands of datapoints can be obtained cheaply[21].

On the other hand, a hot wire Rijke tube is difficult to model accurately. Firstly

the heat release rate is small, meaning that many visco-thermal dissipation

mechanisms are sufficiently large that they must be included in the model [13].

Secondly, as for all acoustic systems, the reflection coefficients at the ends of75

the tube have a strong influence on the thermoacoustic behaviour. For a quan-

titatively accurate model, they must be measured in situ rather than taken

from models in the literature [22]. Thirdly, the heat release rate fluctuations at

the wire cannot be measured or observed directly. As we will show later, they

also need to be inferred in situ rather than taken from models in the literature80

[3, 11, 14, 23, 24, 25], which are at best only qualitatively-accurate. Finally, as

Shon Ffowcs-Williams demonstrated for the applications of anti-sound, the hot

wire Rijke tube is an ideal starting point for new methods in thermoacoustics.

If we cannot create a quantitatively accurate model of a hot wire Rijke tube,

what hope is there for aircraft and rocket engines?85

4



2. Physics-based modelling of the hot wire Rijke tube

There are several hundred papers that describe or model the Rijke tube.

These are listed in the handful of reviews of this subject over the last 50 years

[6, 26, 27, 28]. The physical mechanism that causes thermoacoustic instability

was correctly described by Rayleigh [29]. Later, Chu [30] re-expressed this in an90

elegant and complete mathematical framework based on small perturbations to

the governing equations. The thermoacoustic mechanism in the hot wire Rijke

tube is described in [27, §3.3.1], which highlights the crucial role played by the

time delay between velocity perturbations and heat release rate perturbations

at the hot wire. If the hot wire is in the upstream (downstream) half of the tube,95

then this time delay causes the heat release rate to be slightly in phase (out of

phase) with the acoustic pressure of the first acoustic mode, causing acoustic

oscillations to be thermoacostically driven (damped). Using analytical methods,

Carrier [13] estimated the gain and phase of the heat release rate of a hot flat

ribbon in a fluctuating air stream. Lighthill [24] performed a similar analysis100

for a hot circular cylinder and Merk [14] for a hot wire gauze. These analytical

methods show that the phase lag is caused by heat conduction through the finite

thickness boundary layers around the hot element and explain why the Rijke

tube requires a through-flow. This is described by Bayly [31]: “If the blowing

is too weak, the wires are surrounded by very thick jackets of stagnant air, and105

the fluctuations in the external flow have a comparatively small effect on the

heat transfer. On the other hand, if the blowing is strong, the phase lag between

the velocity fluctuations and the induced heat transfer fluctuations is small ...

Although the heat transfer is more efficient with strong blowing, the absence of

sufficient phase matching makes the amplification ineffective.”110

The above analytical methods on simplified models, although qualitatively

correct, are not quantitatively correct. Subsequent numerical simulations of

heat transfer in an oscillating flow around a cylinder have shown that the time

delay is two to three times greater than that predicted by Lighthill [32, 33], and

that the gain and phase have more intricate dependence on Re and St than115
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can be derived analytically [25]. Instead, since the 1970’s [31], researchers have

tended to use simple linear relations such as the n− τ law, empirical alterations

to King’s law [34], or CFD simulations. This is shown in a detailed survey of

heat transfer models from 1985 to 2017 [35, Table 3.1]. CFD simulations are

accurate but are too expensive for simple thermoacoustic models. All simple120

thermoacoustic models of the Rijke tube are therefore relying on heat release

rate models that are, at best, only qualitatively accurate. The aim of this paper

is to develop a general method that tunes these models with data such that they

become quantitatively accurate with known uncertainties.

Most studies that aim to create quantitatively accurate models of the Rijke125

tube include viscous dissipation in the acoustic boundary layer along the inside

wall of the tube [11, 13, 27, 32]. Viscous dissipation is greatest where the

acoustic velocity fluctuation is greatest, which is at the ends of the Rijke tube.

Some studies also include thermal dissipation in the acoustic boundary layer,

whose effect has a similar magnitude. Thermal dissipation is greatest where130

the acoustic temperature (equiv. pressure) fluctuation is greatest, which is at

the centre of the Rijke tube. In Rayleigh [36, §348–350] and Kinsler et al.

[37, §9.5] thermal dissipation is included through an added viscosity (note that

[37, Eq.(9.34)] erroneously misses a factor of
√
γ when adapting from [36, §350

Eq.(16)]). By modelling thermal dissipation as increased viscosity, one loses135

the important detail that the location of thermal dissipation differs from the

location of viscous dissipation. In this paper we model both separately so that

the two mechanisms can be disentangled.

All models of the Rijke tube must include heat transfer between the hot wire

and the surrounding air. The mechanism that causes heat transfer (molecular140

diffusion) is the same as that which causes momentum transfer, so there cannot

be one without the other. The question is whether the momentum transfer

is so small that it can be neglected. This momentum transfer manifests itself

as an acoustic pressure drop across the heater that is, in the linear regime,

proportional to the velocity at the heater. This pressure drop is considered by145

[11, p84], [13, Eq.4.4], [38, Eq.34] [39, §3.3] but is always set to zero on the
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grounds that it is small compared with the acoustic pressure amplitude. This

simplifies the analysis but asserts that the drag from an object blocking the

duct is negligible compared with the drag from the acoustic boundary layers

of the duct, which is questionable. In this paper we show that neither can be150

neglected.

All studies of the Rijke tube agree on the strong influence of the time or phase

delay between velocity fluctuations and subsequent heat release rate fluctuations

at the heater. This time delay can influence the frequency and the growth rate

by similar absolute values, although the relative influence on the growth rate155

is larger because the growth rate is close to zero, while the frequency is close

to the resonant frequency of the tube. Indeed, after his famous quote about

vibrations being encouraged, Rayleigh [29] writes: “If the air be at its normal

density at the moment when the transfer of heat takes place, the vibration is

neither encouraged nor discouraged, but the pitch is altered.” An efficient data-160

driven approach will therefore use the frequency drift as well as the growth rate

drift in order to infer the time delay. This requires an accurate measurement of

the speed of sound in the tube, which we perform in §3.1.

3. Experimental configuration

The experimental configuration is a vertical Rijke tube containing an electric165

heater, detailed in [40, 41, 42]. The electric heater (Fig. 1) sets up natural

convection within the tube, which is essential for the thermoacoustic mechanism

[13]. The stainless steel tube is 1 m long, has internal diameter 47.4 mm and

wall thickness 1.7 mm. These dimensions are almost identical to those in Heckl

[3] (1 m long with diameter 44.6 mm), although that tube was horizontal rather170

than vertical, meaning that suction was required to create a flow through the

tube (of 0.6 ms−1), which is about the same as ours. Our heater consists

of two concentric annular ceramic plates with inner diameter 31.6 mm and

outer diameter 47.0 mm (Fig. 1). Flow passes through the central hole in

each annulus and over nichrome wire with diameter 0.6 mm, which is wrapped175
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Table 1: The number of experimental measurements (40) assimilated at each operating

point. Column 1 describes the type of experiment: C1 and C2 denote experiments with

the prongs and heater attached but switched off; C3 denote experiments with the prongs

only; H denotes experiments with the prongs and heater attached and switched on. Column

2 contains a check mark if the thermocouples were present. Column 3 contains the heater

power in Watts. Columns 4 to 23 contain the number of experimental measurements taken at

the heater position shown in the second row, where E denotes the empty tube, in which the

heater and prongs were removed.

Heater position (cm)

T Q E 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

C1 – 0 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –

C2 – 0 – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

C3 – 0 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

H X 0 40 – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –

H X 7 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –

H X 15 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –

H X 30 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –

H X 50 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –

H X 80 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –

H X 130 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –

H X 180 – – – 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – –
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Figure 1: (a) Top view, (b) side view, and (c) isometric view of the heater, which consists of

two identical concentric annular ceramic plates, each wound with nichrome wire. It is held in

place by two threaded prongs (shown), which enter from the upstream end of the tube. The

dimensions are d = 47.0 mm, di = 31.6 mm, dw = 0.6 mm, t = 5.0 mm, h = 5.0 mm, dp=

3.0 mm. The nichrome wire is supplied by by two fabric-coated copper wires (not shown),

which each have diameter 4.0 mm.

around the plates. The design of the annular plates is the same as that in

Heckl [3], although the dimensions differ slightly. The electric heater is placed

at 19 different positions from the bottom end of the tube (Tab. 1). Eight

probe microphones record the pressure near the inner surface of the tube from

xm/L = 0.25 to 0.95 in steps of 0.1. Eight thermocouples are placed from180

xt/L = 0.2 to 0.9 in steps of 0.1. The ambient temperature is measured with a

thermocouple at the inlet of the tube.

The heater power is set to 0, 7, 15, 30, 50, 80, 130, 180 Watts, for 62.5 minutes

at each power. Every 15 seconds, a loudspeaker at the base of the tube forces

the system close to its resonant frequency for 6 seconds, referred to in this paper185

as a ‘ping’. The probe microphones measure the response throughout the tube

at 10 kHz during the forced and the decaying period.

The experiment exhibits a long timescale (typically 1000 seconds), at which

the tube heats up and reaches steady state, and a short timescale (typically 1

second), at which the acoustic oscillations decay. At the long timescale we assim-190

ilate the thermocouple and sound speed measurements. At the short timescale
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we assimilate the decay rate measurements, assuming that the long timescale

flow is quasi-steady. The quasi-steady assumption is reasonable because of the

large difference in the timescales.

In this study we assimilate data only from experiments that are thermoa-195

coustically stable. In previous studies on the same rig [21, 40] we measured

the linear growth rates of unstable thermoacoustic oscillations by stabilising the

system with feedback control and then switching off the control. The decision

to assimilate linear decay rates from the stable system makes no difference to

the assimilation process demonstrated in this paper, but greatly simplifies the200

automation of the experiments. This decision also makes no difference to the

thermoacoustic driving mechanism, which is active whether or not it is stronger

than visco-thermal damping mechanisms and acoustic radiation from the ends

of the tube. Our aim is to assimilate experimental measurements of the sta-

ble system in order to construct a physics-based model of the thermoacoustic205

driving mechanism. In this paper, we compare this model against experimental

results from the stable system and confirm that this model is accurate over this

range of heater powers. Because the model of the thermoacoustic mechanism is

physics-based, it can extrapolate successfully to higher heater powers, whether

or not the system is linearly unstable at those heater powers. While we do210

not check that in this paper, Fig. 4(a) of [21] shows that the thermoacoustic

linear growth rate increases smoothly with heater power from negative growth

rates (stable system) to positive growth rates (unstable system). This shows

that there is no abrupt change in the thermoacoustic driving mechanism as the

system changes from stable to unstable, implying that a physics-based model215

developed in the stable regime should extrapolate to the unstable regime. In

other words, being physics-based rather than physics-agnostic, the assimilated

model will be able to correctly predict positive growth rates, even if it has as-

similated data only from negative growth rates. This makes the current study

relevant to unstable thermoacoustic systems, and also to the design of auto-220

mated experiments on combustion systems: one can develop models of the heat

release rate fluctuations at the flame (e.g. FTF, n− τ) in stable configurations,
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which are safer, and then extrapolate them to unstable configurations.

3.1. Measurement of the local speed of sound

The acoustic frequency at the short timescale depends strongly on the local225

speed of sound in the tube. A previous study [41, 42] inferred the local speed

of sound from the local gas temperature measurements. We suspect, however,

that radiation from the heater introduces excessive systematic error into this

measurement. In this study we therefore measure the local speed of sound with

the probe microphones. Before each ping, the loudspeaker sends an impulse230

down the tube, known in this paper as a ‘click’. The 8 probe microphones

measure the response along the tube at 62.5 kHz. We find the phase shift that

maximises the cross-correlation function between the microphones (i.e. brings

the measured impulses optimally in phase). This process yields the time at

which the impulse arrives at each microphone and therefore an estimate of the235

local sound speed. This local sound speed differs by up to 5% from that inferred

from the thermocouple measurements. This local sound speed is fed into a model

of the long timescale flow via an Ensemble Kalman Filter, described in the next

section. In this study we infer the local temperature inside the tube from this

model. The only thermocouple we use is that which measures the ambient240

temperature.

The channels of the acquisition system have slightly different delays. We

measure these delays by performing several clicks at ambient sound speed. We

then subtract these delays from the measurements, thus removing a significant

source of systematic error. We find that this delay depends on the sampling245

frequency so we perform a second calibration for the ping experiments, which

were sampled at 10 kHz.

4. Overview of the physics-based models

4.1. 1D pipe flow model for the long timescale flow

The long timescale flow is an unsteady 1D flow conjugate heat transfer model250

extended from a previous study [41] to include conductive cooling of the tube
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Figure 2: (a) Velocity at the heater, Uh, as a function of heater position, Xh, and heater

power, Qh. (b) Local speed of sound, c(x), as a function of heater position, Xh, at Qh =

180 W. These results are calculated from the 1D pipe flow model (§4.1) for the long timescale

flow after assimilating data from the click experiments (§3.1) and the ambient thermocouple.
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through contact with the support structure, conductive heating of the tube

through thermal contact with the heater, heat loss from the wires upstream of

the heating element, and variation of Nusselt number along the inner wall. Four

parameters characterize (i) the inviscid drag coefficient of the heater, (ii) the255

Nusselt number on the outer surface of the tube, (iii) the thermal resistance

at the tube mounts, and (iv) the proportion of supplied power that conducts

through the tube wall. Two further parameters characterize the Nusselt number

distribution inside the tube. For a given configuration, the model outputs the

velocity of the convective flow, the local temperature in the gas, and the local260

temperature on the inner and outer walls of the tube.

One hundred realisations of the long timescale model are iterated as an

ensemble. The parameters of each ensemble member are randomly sampled

from a uniform prior distribution. At each assimilation step, the ensemble

forecast and experimental measurements are supplied to an Ensemble Kalman265

Filter (EnKF) [43]. These measurements consist of the ambient temperature,

the click arrival time at each microphone, and the measured heater power. The

EnKF returns the expected values and variances of the system’s state and the

model’s parameters. As more data become available, the state and parameters

converge to constant values with high certainty. Figure 2 shows the velocity at270

the heater and the local sound speed, as functions of the heater position and

heater power. As Xh increases, the length of the column of hot air above the

heater decreases, so the buoyancy force driving the flow decreases, causing the

velocity at the heater Uh to decrease (Fig. 2a) and, at a given heater power,

the temperature jump across the heater to increase (2b). Although these trends275

should be smooth, there is clear evidence of measurement and model error in

Fig. 2: (a) Uh is expected to decrease smoothly with Xh but does not; (b)

the maximum of c(x) is expected to increase smoothly with Xh but does not

at Xh = 0.75 m. The main source of error is the fact that the number of

microphones downstream of the heater decreases as Xh increases, so there are280

fewer measurements of the downstream sound speed during the click test. It is

impractical to remove all this error. Instead, we group the measurement and
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model errors and check a-posteriori that the combined error is small compared

with the trends in the model predictions. We note that Uh is derived from several

measured quantities, whose errors accumulate into the error in Uh, and that the285

model assumes uniform flow at the heater location, which is a simplification.

We must therefore be aware that Uh contains more systematic uncertainty and

model error than the other variables.

4.2. Thermoacoustic Network Model for the short timescale flow

Acoustic waves are modelled as forward-travelling waves, f(t − x/c), and290

backward-travelling waves, g(t + x/c), in N acoustic elements within the tube

[6, 41]. The speed of sound, c, and density, ρ, in each element are extracted

from the long timescale model. In element i, the pressure is pi = fi +gi and the

velocity is ui = (fi−gi)/(ρici). At the interfaces between the acoustic elements,

the waves in adjacent elements are related through jump conditions for the295

momentum and energy equations. The linear influence of all components of the

network model can be expressed in terms of local linear feedback from velocity

or pressure into the momentum or energy equations [44, §VI(A)]. Labelling these

feedback coefficients k??, the jump conditions are:

pi+1 − pi = −kmu ui − kmp pi (1)

ui+1 − ui = −keu ui − kep pi (2)

For example, viscous drag is modelled as local feedback from the velocity300

into the momentum equation (kmu), thermal drag is modelled as local feedback

from the temperature (equiv. pressure) into the energy equation (kep), and the

heat release rate from the wire is modelled as local feedback from the velocity

into the energy equation (keu). Local feedback from the pressure into the mo-

mentum equation, kmp, is not required for this study. In §6 these local feedback305

coefficients are derived from candidate physics-based models and are expressed

in terms of those models’ parameters. Wave reflection at the upstream and

downstream ends of the tube are modelled by complex reflection coefficients,

Ru and Rd.
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The equations are converted to the frequency domain through modal decom-310

positions such as f(t − x/c) = F este−sx/c, where −is is the complex angular

frequency of oscillations. There are 2N unknown amplitudes (N each for F

and G) and 2N constraints (2(N − 1) jump conditions and 2 reflection condi-

tions). This creates a nonlinear eigenvalue problem for the eigenvalue s, which

is solved with Newton iteration. We calculate the corresponding eigenfunction315

P (x, s) from F and G. We then use first order [17] and second order [18] adjoint

methods to obtain the first and second derivatives of s and P with respect to

all the local feedback coefficients k?? and reflection coefficients R?. We then

combine these derivatives to obtain the first and second derivatives of s and P

with respect to the model parameters of the components of the network model.320

Details can be found in comments in the Matlab code supplied with this paper

[20].

5. Data assimilation with Bayesian Inference

We denote each physics-based model as Hi with a set of variable parameters,

a. We label the data as D, which consists of a complex angular frequency z and325

a complex pressure measurement Q at each microphone location.

5.1. Maximum a Posteriori parameter estimation

First we assume that each model is true and infer its parameters from the

data D [15]. The posterior probability of the parameters a is:

P (a|D,Hi) =
P (D|a,Hi)P (a|Hi)

P (D|Hi)
(3)

At this level of inference the denominator of (3) is ignored and the maximum

posterior likelihood of the model parameters, aMP, is found by maximizing the

numerator.330

The data, D, consists of nine complex numbers for each ping: the eigen-

value, z (whose real part is the growth rate and whose imaginary part is the

angular frequency), and the Fourier-decomposed complex pressure, Q, at the
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eight microphone locations. A cost function, J , is defined as the negative log of

the posterior likelihood. If all distributions are assumed to be Gaussian then J335

is the sum of the squares of the discrepancy between the model parameters and

their prior estimates, weighted by the confidence in the prior estimates, added to

the sum of the squares of the discrepancies between the model predictions and

the experimental measurements, weighted by the confidence in the experimental

measurements:340

J = − log {P (D|a,Hi)P (a|Hi)}

= (sr(a)− zr)TC−1
sr (sr(a)− zr) . . .

+ (si(a)− zi)TC−1
si (si(a)− zi) . . .

+ (Pr(a)−Qr)TC−1
pr (Pr(a)−Qr) . . .

+ (Pi(a)−Qi)
TC−1

pi (Pi(a)−Qi) . . .

+ (a− af )TC−1
aa (a− af ) (4)

where: a is a column vector containing the parameter values; sr(a) is the model’s

growth rate; zr is the measured growth rate in the experimental configuration

represented by parameters a; Csr is the covariance matrix of the growth rate

measurements; si(a) is the model’s frequency; zi is the measured frequency; Csi

is the covariance of the frequency measurements; Pr(a) and Pi(a) are the real345

and imaginary components of the pressure predictions at each microphone; Qr

and Qi are the real and imaginary components of the pressure measurements;

Cpr and Cpi are the covariance matrices of the pressure measurements; Caa is

the prior covariance matrix of the parameters; af is a column vector containing

the prior estimates of the parameter values.350

The first derivative of the cost function J with respect to the parameters,

a, is derived via a first order Taylor expansion of (4). It is expressed in terms

of the first derivatives of s and P with respect to the parameters. The deriva-

tives of s and P are calculated from the network model using first order adjoint

methods [17]. A BFGS (Broyden-Fletcher-Goldfarb-Shanno) gradient-based op-355

timization algorithm is used to find the parameter values, aMP, that minimize
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the cost function J , given the prior covariance Caa, and the measurement vari-

ances Csr, Csi, Cpr, Cpi. This is known as the maximum a posteriori estimation

(MAP).

If the measurement uncertainties are unknown, for example if an un-measured360

or unknown factor is affecting the measurements, then the measurement vari-

ances Csr, Csi, Cpr, Cpi can be allowed to float. The derivative of J with

respect to Csr, Csi, Cpr, Cpi is easily calculated from (4). These derivatives can

be included in the BFGS optimization algorithm in order to find the values of

Csr, Csi, Cpr, Cpi and aMP at which J is minimized.365

5.2. Parameter error estimation with Laplace’s Method

The MAP method gives the most likely parameters, aMP, given a model, Hi,

but does not yet give the uncertainties in the parameters. This is found with the

Laplace Approximation, which is also known as the Saddle Point Method. In

order to estimate these uncertainties we re-use the assumption that P (a|D,Hi)

is Gaussian around aMP and we define its inverse covariance matrix around this

point as A:

− log {P (a|D,Hi)} =
1

2
(a− aMP)TA(a− aMP) + const (5)

By inspection, A is simply the Hessian of J :

Aij =
∂2J
∂aiaj

(6)

The second derivative of the cost function J with respect to the parameters,

a, is derived via a second order Taylor expansion of (4) around aMP. This is

expressed in terms of the first and second derivatives of s and P with respect

to the parameters. The second derivatives, like the first derivatives, are found370

with adjoint methods [18]. It is worth mentioning that the contribution of the

second derivatives to A is usually an order of magnitude smaller than the contri-

bution of the first derivatives. It is also worth mentioning that the approximate

Hessian created during the BFGS optimization algorithm is usually an excellent

approximation to A. This means that the second derivatives of s and P , which375

are expensive to calculate, often do not need to be calculated.
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5.3. Model Comparison with Laplace’s Method

At the second level of inference, we wish to infer which model is most plau-

sible given the data [15]. By Bayes’ theorem the posterior probability of each

model is:

P (Hi|D) ∝ P (D|Hi)P (Hi) (7)

On the RHS, the second term is our prior estimate for the probability of model

Hi, while the first term is the denominator of (3), which is known as the ev-

idence or marginal likelihood. Assuming that each candidate model has equal

probability P (Hi) then the models are ranked by evaluating the evidence:

P (D|Hi) =

∫
a

P (D|a,Hi)P (a|Hi)da (8)

Assuming furthermore that P (Hi|D) is Gaussian, this is given by:

P (D|Hi) ≈ P (D|aMP,Hi)P (aMP|Hi) (det(A/2π))
−1/2

(9)

where A is the Hessian calculated in (6). This evidence, which is also known

as the Marginal Likelihood, is calculated cheaply with Laplace’s Method. The

most likely model is that with the largest Marginal Likelihood. The larger the380

number of parameters, a, in the model, Hi, the larger the Hessian, A. This

tends to penalize over-elaborate models unless they fit the data extremely well.

The Marginal Likelihood, like the MAP point, depends on the measurement

uncertainty. Laplace’s method also gives the gradient of the Marginal Likelihood

with respect to the measurement uncertainties. This gradient can then be used385

to find the Maximum Marginal Likelihood (MML) of a model, given some data,

allowing the measurement noise to float. In this paper we calculate only the

MAP parameter values because the MML parameter values turn out to be

almost identical.

6. Creating the quantitatively-accurate physics-based model390

In this section we construct a quantitatively accurate model of the Rijke

tube by assembling several component models, each of which is the candidate

18



model with the highest marginal likelihood given the experimental data. We

assimilate data from the cold experiments first and then assimilate data from the

hot experiments. The network model (§4.2) of the empty tube contains N = 40395

elements with equal length. When the heater is added to the model, the acoustic

element at the heater location is split into two elements, with jump conditions

(1,2) at the heater. The same procedure is followed when the 8 thermocouples

are added. The network model therefore contains between 40 and 50 acoustic

elements, N , depending on the configuration. We have checked that the model400

predictions do not change significantly with N for N > 40. In the Matlab code

supplied with this paper, N is held in param.N and can be changed.

6.1. Thermo-viscous boundary layer drag and reflection coefficients

We model the viscous drag in the boundary layers inside the tube by using

Stokes’ solution [36, §347(7)]. In the frequency domain, the tangential wall

shear stress, τw, acting on the air is:

τ̂w = −µ ∂û

∂y

∣∣∣∣
w

=
(ωρµ

2

)1/2

(1 + i)û = (ωρµ)1/2
√

i û (10)

This stress acts on the perimeter area πDδx, where δx is the length of an

element in the network model. The pressure on either side of this element acts405

on a cross-sectional area πD2/4. The viscous boundary layer drag is therefore

modelled through a jump condition in the pressure (1) via a local feedback

coefficient kmu = δx(4/D)(ωρµ)1/2
√

i.

Rayleigh [36, §348 – 350(16)] models the thermal drag by adding (a/b −

b/a)
√
α to the viscosity, where a ≡

√
γp/ρ, b ≡

√
p/ρ, and α is the thermal410

diffusivity. This simple model is not appropriate, however, if visco-thermal drag

is modelled through local feedback because the thermal drag is proportional to

the wall temperature gradient, which is largest at pressure antinodes, while the

viscous drag is proportional to the wall velocity gradient, which is largest at

velocity antinodes. Instead, here we model the thermal drag as local feedback415

from the acoustic temperature into the energy equation (2) using the method

in [44, §X.D]. This gives kep = δx(γ − 1)/(ρc)2(4/D)(ωρµ)1/2Pr−2/3
√
i. For
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Figure 3: MAP Posterior probability distributions P (aMP|D,H) for a = (|R|,∠R, η) when as-

similating data from the two empty tube experiments labelled E in Table 1. The contours show

1, 2, and 3 standard deviations from the assimilated expected values for (a) a = (|R|,∠R),

(b) a = (|R|, η), and (c) a = (∠R, η). (?.i) The data contains decay rate and frequency only,

measured by the microphone at x/L = 0.75. (?.viii) The data contains the decay rate, fre-

quency, and relative pressures of all 8 microphones. This shows that the posterior probability

distributions collapse only if the data contains sufficient information for that model. The

values predicted by Rayleigh [36] and Levine-Schwinger [22] are shown for comparison.

the assimilation process, we multiply kmu and kep by a real constant η, which

would be unity if this model were perfect.

The ends of the tube are identical so, when the tube is empty, we assume420

that their reflection coefficients are the same: Ru = Rd = R. For both empty

tube experiments (column E in Table 1), Levine-Schwinger’s (LS) calculations

[22] give |R|LS = 0.9975 and ∠RLS = 3.0550. If we set η = 1.0 and assimilate

R directly from the experimentally-measured growth rates and frequencies of

the two empty tube experiments we obtain |R| = 0.9953 and 0.9952, and ∠R =425

3.0597 and 3.0641. Alternatively if we set R = RLS and assimilate η we obtain

η = 1.1235 and η = 1.1198. It might be tempting to accept a 0.23% discrepancy

in |R| or a 12% discrepancy between the boundary layer model and experiment,

but careful use of Bayesian inference enables us to improve on both values.

20



For demonstration, we will now infer R and η simultaneously, first when430

there is insufficient information in the data, and second when there is sufficient

information. We set one standard deviation of the measurement uncertainties

to be 0.1 rad s−1 for the decay rate and 1 rad s−1 for the frequency. For the

prior expected values we set R = RLS and η = 1.0. We set large prior variances.

Figure 3(a) shows the first inference problem, in which we attempt to infer435

|R|, ∠R and η from the decay rates and frequencies only. On the one hand, |R|

and η both strongly influence the decay rate but weakly influence the frequency.

It should therefore be impossible to infer |R| and η simultaneously because there

is only one useful piece of information: the decay rate. On the other hand

∠R strongly influences the frequency but weakly influences the decay rate. It440

should therefore be possible to infer ∠R quite accurately because the frequency

information is useful and is broadly unaffected by |R| and η. Figure 3(a) shows

the posterior expected values and co-variances between pairs of parameters, in

the form of rings denoting 1, 2, and 3 standard deviations from the expected

values. The bottom-left frame contains a long thin diagonal ellipse, showing as445

expected that the data can be explained by a wide range of |R| and η, where the

main source of uncertainty in one is the value of the other. The other frames

contain fatter ellipses, showing as expected that the data can be explained

by a rather small range of ∠R, where the main source of uncertainty is the

measurement uncertainty rather than the values of |R| and η.450

Figure 3(b) shows the posterior expected values and covariances when we

attempt to infer R and η from the decay rates, frequencies, and the relative

amplitudes and phases of all 8 microphones. Now there is sufficient information

in the data that it can only be explained by small ranges of |R|, ∠R, and η. We

see that η is remarkably close to 1.0, indicating that Rayleigh’s model performs455

well for this experiment, but that the inferred R deviates slightly from RLS.

This slight deviation is to be expected because our tube is not infinitely-thin

and the exterior volume is not infinitely large, which are both ingredients of LS’s

model. We calculate kLS such that R = kLS ×RLS and hardwire this empirical

coefficient into the model for R used in the rest of this paper.460
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Table 2: Description and performance of seven models for the drag and blockage caused by the

heater prongs. Column 2 contains the number of parameters, a, in each model. Columns 3 and

4 describe how the viscous prong drag, kmup , and thermal prong drag, kepp , are modelled: as

the tube perimeter boundary layer drag multiplied by a real parameter, a complex parameter,

or zero. Column 5 describes how the blockage of the prongs, keuh , is modelled: as a real

parameter or zero. Column 6 contains the log best fit likelihood (BFL) per datapoint, where

BFL = P (D|aMP,Hi); a more positive log(BFL) implies a better fit to the data. Column 7

contains the log Occam Factor (OF) per datapoint, where OF = P (aMP|Hi) (det(A/2π))−1/2;

a more negative log(OF) means that the parameter space has collapsed more when the data

arrive. On the one hand this indicates that the model has learnt well from the data. On the

other hand this can indicate that the prior parameter space is large and that the model has

too many parameters. If the model is good then a small OF will be accompanied by a large

BFL. Column 8 contains the log Marginal Likelihood (ML) per datapoint, where ML = BFL

× OF (9); a more positive log(ML) implies higher evidence for the model, given the data.

Model Params kmup kepp keuh
log(BFL) log(OF) log(ML)

1 1 real zero −0.3635 −0.3561 −0.7197

2 2 complex zero −0.3575 −0.5567 −0.9141

3 2 real real zero −0.3552 −0.4151 −0.7702

4 4 complex complex zero +0.9452 −1.2319 −0.2867

5 1 zero zero real −3.7064 −0.1736 −3.8799

6 2 real real +0.6705 −0.5767 +0.0938

7 3 real real real +0.7010 −0.8191 −0.1181

6.2. Drag and blockage by the heater prongs

The heater is held by two 3 mm diameter threaded prongs and fed by two

4 mm diameter fabric-coated copper wires. These are inserted from the up-

stream end (x = 0). The black dots in Fig. 4 shows the measured growth rates

and frequencies as the prongs are inserted without the heater attached. On465

physical grounds, we may suspect that these variations are caused by the extra

thermo-viscous drag and blockage caused by the prongs and wires. We may

not be sure, however, which physical effects need to be included in a low order

model. On the one hand, we need to include all physical effects having a signifi-

cant influence. On the other hand, if we include too many, it will be impossible470

22



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1050

1052

1054

1056

1058

1060

1062

1064

1066

Figure 4: (a) Growth rate, sr, and (b) angular frequency, si, as the heater prongs are inserted

through the tube from x = 0 to x = Xp. The black dots show the experimental measurements.

The coloured lines show the predictions from the models in Table 2 after assimilating the

experimental data such that each model’s parameters are at their MAP point. Coloured error

bars: the measurement uncertainty that maximizes the peak of the MAP point for each model.

For each measurement (black dot) the error bars are ordered from model 1 on the left to model

7 on the right.

23



to distinguish between them with the available data, as shown in Fig. 3(a). In

this section we propose seven reasonable physics-based models, assimilate the

data into those models, and use the marginal likelihood to identify the most

likely model given the data.

We denote Pp as the sum of the perimeters of the prongs and heater wires,475

and Pt as the perimeter of the tube. At each axial location containing the

prongs, their viscous drag and thermal drag are modelled by multiplying the

viscous drag and thermal drag of the tube’s boundary layer at that location by

Pp/Pt and then following the procedures outlined in the next paragraph. The

effect of their blockage is modelled as an area change at the heater position xh.480

We follow the analysis in [45, §4.4.2], which allows the effect of the area change

to be expressed as local feedback from u into the energy equation: keuh
=

1− (ρ1A1)/(ρ2A2).

Model 1 multiplies the local viscous drag (kmu) and local thermal drag (kep)

by the same real parameter to account for a possible change in the magnitude485

of drag between the tube walls and the prong walls due to the different surface

roughness and materials. Model 2 multiplies the viscous drag and thermal

drag by the same complex parameter to account for possible changes in the

magnitude and phase of each type of drag. Model 3 multiplies the viscous

drag by one real parameter and the thermal drag by another real parameter to490

account for possible independent changes in the magnitudes of the viscous and

thermal drags. Model 4 multiplies the viscous drag by one complex parameter

and the thermal drag by another complex parameter to account for possible

independent changes in the magnitude and phases of the viscous and thermal

drags. Model 5 multiplies keuh
by one real parameter to account for the blockage495

but contains no visco-thermal drag from the prongs. Model 6 combines models

1 and 5. Model 7 combines models 3 and 5. There is no limit to the number of

models that can be proposed, but seven is enough for our purposes.

The parameters are assimilated allowing the measurement uncertainties to

float in order to account for systematic error in the measurement and the model.500

This gives the fairest comparison of the marginal likelihoods because, if the mea-
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surement uncertainties are fixed to their small measured values, then simple

models (which tend to have larger model error) become overwhelmingly un-

likely even if they miss just a few of the datapoints. Figure 4 shows the model

predictions vs experimental measurements, while Table 2 summarises the de-505

tails of each model and shows their best fit likelihood (BFL), Occam Factor

(OF), and marginal likelihood (ML). Models 1, 2, 3, and 5 have large negative

values of log(BFL) and log(ML), meaning that they fit the data badly and are

not supported by the data. Models 1, 2, and 3 (no blockage) cannot match the

experimental frequency, which implies that a successful model must include the510

prong blockage. Model 5 (no drag) cannot match the experimental growth rate,

which implies that that a successful model must include the prong drag. Models

4 (complex thermo-viscous drag but no blockage) and model 6 and 7 (real drag

and blockage) have large positive values of log(BFL), meaning that they fit the

data well. Of these, model 6 has the largest value of ML because it achieves this515

good fit with just two parameters, while model 7 contains three parameters and

model 4 contains four parameters. It is reassuring that the model with the most

evidence (the highest marginal likelihood) is the simplest model that contains

the expected physics. While a human may have been able to identify this model

by hand, this Bayesian framework provides a rigorous and quantifiable measure520

of its suitability compared with other plausible candidate models.

6.3. Drag and blockage by the heater itself

The experiments in rows C1 and C2 of Table 1 were performed on different

days with the heater attached but switched off and with no thermocouples

present. The blue circles in Fig. 5 show the growth rates and frequencies as525

the heater is traversed through the tube. By comparing them with the purple

squares, which are for the prong only experiments, it can be seen that the heater

significantly changes the growth rate and frequency when at the ends of the tube

and slightly changes the growth rate when at the centre of the tube. In this

section, we propose physical reasons for this and compare the evidence for three530

corresponding physical models.

25



0 0.2 0.4 0.6 0.8 1

-13

-12

-11

-10

-9

-8

-7

0 0.2 0.4 0.6 0.8 1

1035

1040

1045

1050

1055

1060

1065

Figure 5: Experimental measurements and model predictions of (a) the growth rate, sr, and

(b) the angular frequency, si, for all the cold experiments (rows C1, C2, C3, and H at Q = 0

in Table 1). The model combines R and η from Fig. 3, model 6 from Table 2 for the prongs,

model 3 from Table 3 for the heater, and thermo-viscous drag for the thermocouples. The

experiments with the heater in place were performed on different days at different ambient

temperatures, which accounts for the jagged lines that are particularly visible in the growth

rate.
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Table 3: As for Table 2 but assimilating models for the drag and blockage caused by the

heater (Fig. 1). Column 3 describes whether kmuh is imaginary or complex: if imaginary,

the heater is modelled as an orifice plate without viscous drag; if complex, the model also

includes viscous drag. Column 4 describes whether keph is zero or complex: if complex, the

model includes thermal drag.

Model Params kmuh
keph

log(BFL) log(OF) log(ML)

1 1 imag none −3.7472 −0.0949 −3.8420

2 2 complex none −1.6648 −0.1947 −1.8595

3 4 complex complex +0.4209 −0.4047 +0.0162

The heater (Fig. 1) consists of two orifice plates, one behind the other.

From [45, §4.4.3], the pressure drop across a single orifice plate with length L and

cross-sectional areaAd in a pipe of radiusA equals ∆p = −ρLLeff(A/Ad)(du/dt),

due to the inertia of the air in the orifice plate. The length LLeff equals L + 2δ535

where δ is typically (8/3π)(Ad/π)1/2. The local feedback mechanism is there-

fore from the velocity into the momentum equation. When converted to the

frequency domain, the local feedback coefficient is kmuh
= ρLLeff(A/Ad)s where

s is the complex angular frequency, whose imaginary part is much greater than

its real part.540

Nichrome wire is wound around each orifice plate. It is reasonable to suppose

that the viscous drag from the wire is non-zero because momentum transfer

from the wire relies on the same physical mechanism as heat transfer, and heat

transfer will be crucial in later sections. The question is whether the data shows

that the contributions to the viscous drag coefficient (kmuh
) and thermal drag545

coefficient (keph
) are negligible compared with the contribution to kmuh

from

the orifice. (Note that the orifice and the viscous drag both contribute to the

same local feedback coefficient, although the orifice affects only the imaginary

component.)

We evaluate three models. Model 1 models the orifice alone, by assimilating550

an imaginary value of kmuh
and setting the other local feedback coefficients

(kmph
, keph

, keuh
) to zero. Model 2 is the same as model 1 but allows kmuh

to
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be complex, which models the orifice and the viscous drag, but not the thermal

drag. Model 3 models the orifice and the wire’s visco-thermal drag by allowing

complex non-zero values of kmuh
and keph

. Table 3 shows the BFL, OF, and555

ML of all three models. Of these, the data supports model 3. Although not

shown here, model 1 fails because it cannot model the influence of the heater

on the growth rate at the ends of the tube, where the acoustic velocity is high

and the viscous drag is important. Model 2 fails because it cannot model the

influence of the heater on the growth rate at the centre of the tube, where the560

acoustic temperature fluctuation is high and the thermal drag is important.

Model 3 models the orifice blockage, the viscous drag, and the thermal drag. It

is worth noting that the imaginary part of kmuh
is six times greater than its real

part, indicating that the orifice blockage is significantly more influential than

the viscous drag.565

The experiments in row H0 of Table 1 were performed on different days with

the heater attached but switched off and with thermocouples in place. The

orange triangles in Fig. 5 show the growth rates and frequencies of these ex-

periments. By comparing them with the blue circles, which are for the same

experiments without the thermocouples in place, it can be seen that the thermo-570

couples significantly affect the growth rate and slightly affect the frequency. We

model the thermocouples as identical local thermo-viscous drag elements and

assimilate their complex visco-thermal drag coefficients kmut and kept . Further

details are not reported here but can be found in the Matlab code [20]. Figure 5

shows the experimental measurements and calibrated model predictions from all575

the cold experiments, using calibrated Levine-Schwinger for the reflection coef-

ficients, Rayleigh’s model for the tube boundary layer, model 6 from Table 2 for

the prongs, model 3 from Table 3 for the heater, and assimilated visco-thermal

drag coefficients for the thermocouples.

6.4. Inferring the fluctuating heat release rate at the heater580

Having carefully developed a quantitatively-accurate model of the elements

of the Rijke tube from the cold experiments, we now assimilate keuh
, which
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Figure 6: Local feedback coefficient from velocity fluctuations to heat release rate fluctuations

at the heater, keuh , inferred independently at each heater power and heater position. The solid

lines show the expected values. The patches show ±2 standard deviations. (a) |keuh |/Qh; (b)

∠keuh . These values were inferred from the experiments in rows H of Table 1, with R and η

from Fig. 3, model 6 from Table 2 for the prongs, model 3 from Table 3 for the heater, and

thermo-viscous drag for the thermocouples.

29



is the local feedback from the velocity to the heat release rate at the heater.

Figure 6 shows the expected values of keuh
±2 standard deviations calculated

independently at each heater power and heater position. The parameter keuh
is585

inferred from the thermoacoustic behaviour of the system. The thermoacoustic

effect is strongest when the heater is placed around Xh = 0.25 and Xh = 0.75,

and is weakest when placed around Xh = 0.5. The uncertainty in keuh
should

therefore be smallest when the heater is placed around Xh = 0.25 and Xh = 0.75

and greatest when placed around Xh = 0.5. This can be observed clearly in590

Fig. 6. Away from Xh = 0.5 and for heater powers above 15 Watts, the values

of |keuh
|/Qh and ∠keuh

are, with little uncertainty, re-assuringly independent

of the heater position and heater power. The biggest deviation is seen when the

heater is near the top end of the tube (Xh ∼ 0.8), and, by inspecting the two

right-most temperature profiles in Fig. 2, we suspect this is due to a systematic595

error in the base flow calculation.

For comparison, Fig. 7 shows keuh
calculated from the same data, but with-

out including models for the thermo-viscous drag and blockage of the heater

and prongs. It is tempting to ignore the thermo-viscous drag and blockage

of the heater and prongs, as in [11, 13, 38, 39] because they are difficult to600

model and seem a priori to have little influence. With these ignored, how-

ever, |keuh
|/Qh and ∠keuh

seem to change significantly with heater power and

heater position. Most worryingly, ∠keuh
seems to change discontinuously around

Xh = 0.5. There is, of course, no physical justification for this apparent depen-

dence. It arises simply because keuh
is being used to accommodate deficiencies605

elsewhere in the model. A machine learning algorithm applied to a neural net-

work would learn this dependence but, consequently, would only be able to

interpolate between previous observations. The advantage of our physics-based

Bayesian approach is that it reveals bad models, such as that used to create

Fig. 7, and forces the researcher to develop good models, which tend to have610

simple physically-interpretable behaviour, such as that used to create figure 6.
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Figure 7: As for Fig. 6, with R from Levine-Schwinger [22], η = 1 in Rayleigh’s model and

neglecting blockage and thermo-viscous drag from the prongs and heater.
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6.5. Modelling the fluctuating heat release rate at the heater

We now propose nine candidate models for the complex local feedback co-

efficient keuh
. These models are listed in Table 4, where ki with numerical

subscripts are the model parameters. Models 1, 2, 7, 8, & 9 model |keuh
| as

k1 × Qh, taking inspiration from Fig. 6, in which this quantity is seen to be

nearly uniform over the operating regime. Model 3 models |keuh
| as k1×Qk3

h , to

see whether the added flexibility of the power law in Qh increases the marginal

likelihood of the model. Models 4, 5, & 6 model |keuh
| as k1 × QKing, where

QKing is calculated from King’s law [23, Eq(33)]:

QKing =
1

(Re Pr π/2)−0.5 + 2

Qh

Uh
(11)

Models 1, 3, 4, & 9 model ∠keuh
as constant k2, taking inspiration from Fig.

6, in which this is nearly uniform over most of the operating regime. Models

2, 5, 7, & 8 model ∠keuh
as k2 × Im(s), which corresponds to a constant time615

delay model in which τ = k2. Model 6 models ∠keuh
as k2 × Im(s)τL where

τL ≡ 0.2dwire/Uh is the time delay calculated by Lighthill [24]. If this is accurate

then k2 should assimilate to 1.

Models 1, 2, 3, 4, 5, & 6 assume that the thermo-viscous drag at the heater

does not change when the heater element becomes hot. Model 7 allows the620

viscous drag to drift from its cold value in proportion to Qh. Models 8 and 9

allow the viscous and thermal drags to drift from their cold values in proportion

to Qh. There is no limit to the number of models that can be proposed and the

interested reader is encouraged to propose their own models in the Matlab code

that accompanies this paper [20].625

Of the models with constant thermo-viscous drag at the hot wire (models 1

to 6), model 2 has the highest marginal likelihood. The extra flexibility of model

3 turns out not to be beneficial. Modelling the heat release rate with King’s

law is marginally less accurate, but this could be due to systematic errors in

Uh calculated with the long timescale code in §4.1. The marginal likelihood630

increases significantly when the thermo-viscous drag at the hot wire is allowed

to increase with the heater power in models 7, 8, & 9. This has little effect on the
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Table 4: As for Table 2 but assimilating models for the hot heater. Column 2 contains the

number, N , of parameters, which are labelled k1 . . . kN . Column 3 contains the model for

|keuh |, where Qh is the heater power and QKing comes from (11). Column 4 contains the

model for ∠keuh where Im(s) is the frequency and τL = 0.2dwire/Uh is Lighthill’s time delay.

Columns 5 and 6 contain the viscous and thermal drag coefficients where models 7, 8 and 9

are allowed to deviate from their cold values, kc.

Model Params |keuh
| ∠keuh

kmuh
(kc = cold value) keph

(kc = cold value) log(BFL) log(OF) log(ML)

1 2 k1 ×Qh k2 kc kc −4.7055 −0.1016 −4.8071

2 2 k1 ×Qh k2 × Im(s) kc kc −4.5805 −0.1030 −4.6836

3 3 k1 ×Qk3

h k2 kc kc −4.6477 −0.1385 −4.7862

4 2 k1 ×QKing k2 kc kc −4.7218 −0.1058 −4.8275

5 2 k1 ×QKing k2 × Im(s) kc kc −4.6956 −0.1072 −4.8028

6 2 k1 ×QKing k2 × Im(s)τL kc kc −5.7721 −0.1019 −5.8741

7 4 k1 ×Qh k2 × Im(s) kc +(k3 + ik4)×Qh kc −3.4889 −0.2655 −3.7544

8 6 k1 ×Qh k2 × Im(s) kc +(k3 + ik4)×Qh kc +(k5 + ik6)×Qh −3.2512 −0.3964 −3.6476

9 6 k1 ×Qh k2 kc +(k3 + ik4)×Qh kc +(k5 + ik6)×Qh −3.6496 −0.3837 −4.0333

frequency but a significant effect on the growth rate when the heater is placed

near the ends of the tube, where the acoustic velocity is greatest. Comparing

models 2, 7 & 8 we see that the extra viscous drag is more influential than the635

extra thermal drag, but that including both is best. Comparing models 1 & 2

and models 8 & 9 shows that there is more evidence for models with constant

time delay τ than constant phase angle. Model 8 is the best model, but models

7 and 9 are also good.

Figure 8 compares the experimental measurements with the model predic-640

tions of a model similar to those used by Refs.[11, 13, 38, 39]. This model has

Rayleigh’s thermo-viscous boundary layers, Levine-Schwinger’s reflection coef-

ficients, and model 2 for the heat release rate keuh
, which was the best model

when the thermo-viscous drag from the heater is not included. The most likely

coefficients of model 2 are assimilated from the data but the agreement is not645

good. This model is under-damped so, although it matches the frequency rea-
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sonably well, it always over-predicts the growth rate. Indeed at high powers

and Xh ≈ 0.25, this model predicts a positive growth rate. It is acceptable for

the model to predict a positive growth rate in general, because the model is

physics-based and can therefore extrapolate beyond the experimental regime.650

In this case, however, the model has not extrapolated beyond the experimental

regime, so the positive growth rates are revealing model error.

Figure 9 shows the model predictions when the researcher has noticed that

the first model is under-damped and has chosen to model the extra damping as

if it were all caused by the thermo-viscous boundary layer. This model therefore655

assimilates the coefficient η as well as keuh
. The assimilated constant η is 1.67,

which corresponds to a 67% increase in the boundary layer drag. This seems to

be a reasonable approach and the model is able to approximate the growth rates

and frequencies over the operating range, but it is certainly not quantitatively

accurate.660

Figure 10 shows the predictions for a model that contains the components

with the highest marginal likelihoods: model 8 from Table 4, R and η from Fig.

3, model 6 from Table 2 for the prongs, model 3 from Table 3 for the heater,

and thermo-viscous drag for the thermocouples. This model is qualitatively and

quantitatively accurate over the entire operating range, as desired.665

6.6. Extrapolation

The process of selecting a model from a range of candidate models requires

a large amount of data. The more parameters each model has, the more data is

required in order to choose between them. Once a good model has been selected,

however, it can be trained on sparse data. Figure 11 compares model predictions670

with experimental measurements when data from just eight operating points are

assimilated into the model in Fig. 10. The results are almost indistinguishable

from Fig. 10, for which 105 operating points were assimilated. We appreciate

that this argument is somewhat circular: the model was chosen because it could

explain all the data with few parameters, so it is unsurprising that data from675

a few points, when assimilated into the model, can extrapolate to the other
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Figure 8: Model predictions of (a) growth rate and (b) frequency vs. experimental measure-

ments assimilated with model 2 from Table 4 for the heat release rate, Rayleigh’s model for

the thermo-viscous boundary layer, and Levine-Schwinger [22] for the reflection coefficients.

The error bars on the experimental measurements show two standard deviations of the mea-

surement uncertainty required to maximize the a posteriori likelihood, given this model.
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Figure 9: As for Fig. 8 but with Rayleigh’s thermo-viscous dissipation multiplied by η, where

η is assimilated (to 1.67) to maximize the MAP.
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Figure 10: As for Fig. 8 but using the component models with the highest marginal like-

lihoods: model 8 from Table 4, R and η from Fig. 3, model 6 from Table 2 for the prongs,

model 3 from Table 3 for the heater, and thermo-viscous drag for the thermocouples.
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Figure 11: As for Fig. 10 but assimilating data from just eight of the 175 operating points.
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points. Nevertheless, this feature shows why assimilating data into physics-

based models with few parameters is more desirable than assimilating data into

physics-agnostic models with many parameters: much less data is required.

6.7. The required number of measurement devices680

Having shown that a model can be trained on measurements at just a few

operating points, it is natural to ask how many measurement devices are re-

quired. The answer to this question depends on the stage of experimental de-

sign. When designing, setting up, and commissioning the rig, all information is

useful. At this stage, the biggest problem is systematic measurement error that685

the experimentalist has not yet discovered. One sign of unidentified systematic

measurement error is that a high marginal likelihood can only be achieved with

a model that seems unphysical, such as when one model parameter requires an

unphysical dependence on another. For example, in earlier experiments on this

rig, our model would only fit the measurements well when the heater time delay690

was allowed to be a linear function of the heater position [42]. We investigated

possible reasons for this with CFD simulations of the flow over the heater, but

none was satisfactory. We concluded that the model parameters were shifting in

order to absorb some as yet unidentified systematic measurement error. In or-

der to identify this systematic measurement error, different measurements were695

required. When we measured the sound speed directly with the microphones,

we discovered that the systematic error was in the thermocouple measurements,

probably due to radiation from the heater. When many different measurement

devices are available, it is easier to identify and eliminate systematic measure-

ment error. In this case, we rejected all the thermocouple measurements except700

that of the ambient air.

At the next stage, the biggest problem is model error. The researcher may

not know which physical phenomena are most influential in a given experiment,

so has to select models by finding those with the highest marginal likelihood. As

mentioned in section 6.6, this requires a great deal of data, and every accurate705

measurement is useful. For example, in our early models, we did not include
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Figure 12: As for Fig. 3 but showing only the 3 standard deviation contour of the empty tube

experiment labelled C3E in Table 1 as the number of assimilated microphones increases from

1 (?.i) to 8 (?.viii), where ? denotes (a) a = (|R|,∠R), (b) a = (|R|, η), and (c) a = (∠R, η).

In each frame, contours are plotted for every permutation of microphones that includes the

reference microphone, which is placed at x/L = 0.75. There is therefore 1 combination of

1 and 8 microphones, 7 combinations of 2 and 7 microphones, 21 combinations of 3 and 6

microphones, and 35 combinations of 4 and 5 microphones. The uncertainties decrease as the

number of microphones increases.
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viscous and thermal drag from the tube boundary layers, assuming that their

influence could be neglected or absorbed into the acoustic reflection coefficients.

Because we had 8 microphones, however, we were able to show that their mea-

surements could not be consistent with a model that excluded this visco-thermal710

drag but were highly consistent with a model containing this visco-thermal drag

(Fig. 3b). If we had had just 2 microphones, we would not have been aware of

this model error.

Once systematic measurement error and model error have been reduced as

far as is practical, the number of required measurements depends only on the715

accuracy desired and the skill of the experimentalist. For example, Fig. 12

shows 3 standard deviations of the MAP posterior probability distributions of

∠R, |R|, and Rayleigh’s parameter, η, when assimilating measurements from

1 to 8 microphones. These are the intermediate steps from Fig. 3(?.i) (1 mi-

crophone) to Fig. 3(?.viii) (8 microphones). In each figure, the microphone at720

x/L = 0.75 is the reference microphone, and all possible combinations of the

other microphones are plotted on top of each other (e.g. there are 7 different

configurations with 2 microphones, 21 with 3 microphones, 35 with 4 micro-

phones etc.) With 1 microphone, measuring just the decay rate and frequency,

it is impossible to disentangle ∠R, |R|, and η. With 2 microphones, the pa-725

rameters’ uncertainties depend strongly on which pair of microphones is used.

A skilled experimentalist with reliable equipment can achieve nearly the same

uncertainty with 2 microphones (the central ellipses in Fig. 12(?.ii)) as can be

achieved with 8 microphones (the single ellipses in 12(?.viii)). As the number

of microphones increases beyond 2, the uncertainty rapidly diminishes for all730

combinations of microphones. The extra microphones are therefore an excellent

mitigation against imperfect experimental design.

In conclusion, two microphones are sufficient if they have minimal systematic

error and if the model into which they are assimilated is physically accurate.

More microphones are better, however, because this redundancy enables the735

experimentalist to identify systematic measurement error, to become aware of

model error, and to accommodate microphone placements that, whether by
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accident or design, are imperfect.

7. Conclusion

We have shown that Bayesian inference provides a powerful framework for740

the assimilation of data into physics-based models. Using this framework we

have assembled a physics-based model of a thermoacoustic experiment, compo-

nent by component. For each component we have proposed several candidate

models and have then selected the component model with the highest marginal

likelihood, given the data. The selected component model is always the sim-745

plest model that contains all the physics necessary to explain the data. The

final assembled model is therefore as small as possible, quantitatively accurate,

and physically interpretable. The model extrapolates successfully because it is

physics-based. Much data is required to select the model but, once selected,

little data is required to train it.750

Computer-aided design optimization, whether gradient-based or not, re-

quires models to be quantitatively-accurate. While this is particularly clear

in thermoacoustics, where systems are notoriously sensitive to small changes

and therefore contain significant systematic error, this applies to all areas of

engineering. For the Rijke tube, we have successfully used experimental data755

to create a quantitatively-accurate physics-based model, which is a significant

improvement on other attempts in the literature e.g. [11].

Our next steps are to repeat the experiments and data assimilation for a

flame in a Rijke tube with a more elaborate acoustic network. We will learn

on-the-fly by running the assimilation code alongside the experiments. This will760

allow us to choose the next datapoint such that it contains as much information

as possible and thereby to reduce the total number of experiments. The methods

in this paper are applied most readily to physics-based low order models. They

extend, however, to CFD, which is the subject of current work in flow imaging

[46].765

Finally, there is no limit to the number of physics-based candidate models
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that can be proposed to fit the data. All the figures in this paper have been

created with the Matlab code [20], which is well commented. The reader is

invited to adapt this code by proposing their own models, and to improve on

ours.770
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