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The large-scale coherent motions in a realistic swirl fuel-injector geometry are
analysed by direct numerical simulations (DNS), proper orthogonal decomposition
(POD), and linear global modes. The aim is to identify the origin of instability in
this turbulent flow in a complex internal geometry. The flow field in the nonlinear
simulation is highly turbulent, but with a distinguishable coherent structure: the
precessing vortex core (a spiralling mode). The most energetic POD mode pair is
identified as the precessing vortex core. By analysing the fast Fourier transform
(FFT) of the time coefficients of the POD modes, we conclude that the first four
POD modes contain the coherent fluctuations. The remaining POD modes (incoherent
fluctuations) are used to form a turbulent viscosity field, using the Newtonian eddy
model. The turbulence sets in from convective shear layer instabilities even before
the nonlinear flow reaches the other end of the domain, indicating that equilibrium
solutions of the Navier–Stokes are never observed. Linear global modes are computed
around the mean flow from DNS, applying the turbulent viscosity extracted from
POD modes. A slightly stable discrete m = 1 eigenmode is found, well separated
from the continuous spectrum, in very good agreement with the POD mode shape
and frequency. The structural sensitivity of the precessing vortex core is located
upstream of the central recirculation zone, identifying it as a spiral vortex breakdown
instability in the nozzle. Furthermore, the structural sensitivity indicates that the
dominant instability mechanism is the Kelvin–Helmholtz instability at the inflection
point forming near vortex breakdown. Adjoint modes are strong in the shear layer
along the whole extent of the nozzle, showing that the optimal initial condition for
the global mode is localized in the shear layer. We analyse the qualitative influence
of turbulent dissipation in the stability problem (eddy viscosity) on the eigenmodes
by comparing them to eigenmodes computed without eddy viscosity. The results show
that the eddy viscosity improves the complex frequency and shape of global modes
around the fuel-injector mean flow, while a qualitative wavemaker position can be
obtained with or without turbulent dissipation, in agreement with previous studies.
This study shows how sensitivity analysis can identify which parts of the flow in a
complex geometry need to be altered in order to change its hydrodynamic stability
characteristics.
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Coherent structures and global modes of the flow in a fuel injector 621

1. Introduction
In this numerical and theoretical study, we examine the oscillatory flow in a

swirling fuel injector. We choose this flow for three reasons. First, this flow exhibits
self-sustained oscillations, whose control is of both fundamental and industrial interest
(Lieuwen 2012). Our aim is to identify the wavemaker region of this flow and to
devise strategies for its control. The flow is turbulent, so this information would be
difficult, if not impossible, to obtain using either nonlinear CFD or stability methods
based on equilibrium solutions of the Navier–Stokes equations. Second, we want
to examine whether this global stability analysis can handle complex mean flows
with several potential instability mechanisms, specifically whether it can identify the
primary instability seen in nonlinear direct numerical simulations (DNS). Third, this
is the first time to the authors’ knowledge that adjoint-based sensitivity analysis is
applied on self-sustained oscillations in an internal turbulent flow.

The chosen flow (figure 1) is from the Datum air swirl fuel injector for a helicopter
engine made by Turbomeca. The geometry is axisymmetric. The nozzle consists of
an inner non-swirling stream and a coaxial swirling convergent outer flow (Midgley,
Spencer & McGuirk 2005). Both streams flow from this nozzle into a larger diameter
chamber, with an annular outlet downstream. This models the flow in fuel injectors
of gas turbine engines. The control of hydrodynamic oscillations in fuel injectors
is important for two reasons. First, hydrodynamic oscillations improve mixing of
the air/fuel mixture and help to reduce hot spots, which lead to increased nitrous
oxide (NOx) formation. Second, hydrodynamic oscillations can couple with acoustic
perturbations to enhance or alter thermoacoustic oscillations (Hansford et al. 2015;
Manoharan et al. 2015), which can cause structural damage. At low to moderate
Reynolds numbers, similar flows and nozzle geometries are found in the production
of carbon nanotubes (Conroy et al. 2010).

The time-dependent flow is three-dimensional, while the mean flow is axisymmetric.
The mean flow has two large recirculation zones – a conical region around the
centreline and an annular region close to the outer wall (the streamlines of the present
case will be shown in § 5, figure 4). The inner recirculation zone is formed through
an axisymmetric vortex breakdown when the swirl increases in the contracting nozzle,
due to conservation of angular momentum (Leibovich 1978; Syred 2006). The outer
annular recirculation zone is formed due to confinement. Similar recirculation zones
are found in other confined swirling flows, such as swirling pipe flows with sudden
expansion (Revuelta 2004), and confined swirling jet experiments (Billant, Chomaz
& Huerre 1998). The flow in the present injector has been previously studied in the
incompressible regime by experiments and large-eddy simulations (LES) (Dunham
et al. 2008) at relatively high Reynolds numbers (Re=O(104)−O(105) based on the
average inflow velocity and radius of the outer nozzle outlet). The observed large-scale
oscillations were independent of the Reynolds number within this regime. With zero
flow rate in the inner pipe, as in the present study, both LES and experiments showed
two peaks in the spectrum. By monitoring the profile at the inlet to the combustion
chamber, it was shown that the first peak corresponds to a spiralling mode, and the
second peak a double-helical mode.

Vortex breakdown, which appears in this injector, is a phenomenon appearing
in a wide class of highly swirling flows, with a rotating core and free vortex-
like outer region (Leibovich 1978). Examples are swirling jets and tip vortices
around aeroplane wings. When the swirl is increased from zero, the steady
axisymmetric breakdown appears as a separation zone near the centreline. With
further increases of swirl, typically first the unsteady spiral vortex breakdown
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FIGURE 1. (Colour online) Illustration of the flow geometry. A cross-section in the axial–
radial plane (constant azimuthal angle), showing the inflow (swirler inlet) and the outflow.
The non-dimensional scales are shown: swirler outer diameter (D), and the exit velocity
from the swirler (Ue). The coordinate system is also defined: the origin is at the centreline
at the swirler exit location. The relative dimensions of the geometry are the same as in
the numerical simulation, except that the numerical domain is longer in the downstream
direction.

(azimuthal wavenumber of unity) appears, and second a succession of other modes
with increasing wavenumbers. (In exceptional cases, a spiral vortex breakdown has
been reported without axisymmetric breakdown Beran 1994.)

A few computations of linear temporal global modes in swirling flows can be found
in the literature, and these focus on unconfined vortex breakdown bubbles and swirling
jets. The vortex breakdown bubble of the Grabowski vortex (Grabowski & Berger
1976) has been studied by DNS (Ruith et al. 2003), by weakly nonlinear analysis
(Meliga, Gallaire & Chomaz 2012a) and by global temporal stability and sensitivity
analyses (Gallaire et al. 2006; Qadri, Mistry & Juniper 2013). The base flow for the
Grabowski vortex is axisymmetric and swirling, with a uniform inflow profile for
the axial velocity, and a potential vortex for the swirl velocity. After axisymmetric
breakdown, one or several recirculation bubbles appear at the centreline. When the
swirl or Reynolds number is increased from zero, first a steady recirculation bubble
is formed, and second the bubble becomes unstable to a spiralling global mode at a
value of the swirl parameter of Sw> 0.915. The structural sensitivity of the spiralling
mode is found to be strongest at the upstream edge of the recirculation bubble (Qadri
et al. 2013).

Global modes in swirling flows have also been successfully studied by local
spatio-temporal and spatial stability analyses making the weakly non-parallel flow
approximation. In the experiments of Oberleithner, Sieber & Nayeri (2011), the
swirling jet flow was found to develop self-sustained oscillations when Sw > 0.88
(at a very similar swirl to that of the Grabowski vortex). The frequency and shape
of the oscillations was reconstructed through local analysis techniques, in excellent
agreement with proper orthogonal decomposition (POD) modes of the experimental
data, and more recently the same was done for subcritical (Oberleithner, Paschereit
& Wygnanski 2014a) and forced swirling jets (Oberleithner, Rukes & Soria 2014b).
The stability analyses in the above studies were performed around mean flows from
experiments. The mean flow stability was observed to produce good results in all
regions where the energy production of the eigenmode was positive (i.e. energy
was extracted from the mean field), and less good results in the regions where the
energy production of the eigenmode was negative (i.e. energy flowing back to the
mean field) (Oberleithner et al. 2014b). Finally, the effect of eddy-viscosity models
was considered in Oberleithner et al. (2015). While eddy-viscosity models did not
change the absolute frequencies, they influenced the absolute growth rates, and by
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Coherent structures and global modes of the flow in a fuel injector 623

doing this could alter the streamwise location where the global mode frequency was
selected. The Newtonian eddy model, as in the present study, was seen to provide
the best agreement with experiments regarding both frequency and growth rate.

In the present study, we have chosen to perform a global mode analysis around
a mean flow, instead of an equilibrium solution to the Navier–Stokes equations.
Equilibrium solutions are very difficult to obtain for this flow at Reynolds numbers
above Re= 250, due to axisymmetric convective shear layer instabilities, which appear
as soon as the flow exits the nozzle. At higher Reynolds numbers, the convective
instabilities develop into turbulence before the mean flow reaches the exit of the
domain, and before the self-sustained oscillation (global instability) dominates.

Stability analysis around a turbulent mean flow is controversial but has been widely
discussed, particularly in the reduced-order modelling community. The mean-field
theory introduced by Noack et al. (2003) states that a stability analysis around a
mean flow will produce the limit cycle as a neutrally stable global mode, which was
later confirmed by Barkley (2006) for the cylinder flow. The result for the cylinder
flow is not universal; criteria for its validity and the effect of nonlinear harmonics
has been discussed, for example, by Sipp & Lebedev (2007) and Mezic (2013). The
need to include turbulent dissipation (eddy-viscosity) models in reduced-order models,
independently of harmonics, has been discussed, for example, by Luchtenburg et al.
(2009), Östh et al. (2014) and Protas, Noack & Östh (2015). Mean flow stability has
been used for many studies of convective instability (including the seminal works of
Gaster, Kit & Wygnanski 1985; Cohen & Wygnanski 1987; Weisbrot & Wygnanski
1988) and transient growth (Hoyas & Jimenez 2006; Pujals et al. 2009). Here, we
will focus on the oscillator behaviour and, in particular, its adjoint-based sensitivity.

After Barkley (2006), global mode analysis has been applied to identify large-scale
structures in turbulent flows in a number of studies, and these can be can be divided
into three categories following Mettot, Sipp & Bézard (2014b). In the quasi-laminar
approach, the Navier–Stokes equations, using molecular viscosity for the viscous
term, are linearized around the mean flow derived from nonlinear simulations. In the
base flow approach, a turbulence model equation such as URANS is considered, and
the equation and the turbulence model are both linearized around a fixed point of
the model. A special case in between the two is a frozen eddy viscosity approach,
where a turbulent eddy viscosity is determined from nonlinear data, and applied as
a spatially varying viscosity in the stability analysis, while the turbulent Reynolds
stresses themselves are not linearized.

Here, we are especially interested in the sensitivity of the eigenvalue to changes in
the system. Several sensitivity studies of turbulent flows have been performed recently.
The base flow approach was used by, for example, Meliga, Pujals & Serre (2012b)
to compute the sensitivity of a turbulent (Re= 13 000) flow around a D-shaped bluff
body, using URANS equations combined with a linearized Spalart–Allmaras model.
The most sensitive region for passive control was successfully matched against
experiments. Other successful studies include Mettot, Renac & Sipp (2014a) and
Crouch, Garbaruk & Magidov (2007). The base flow approach is mathematically
fully consistent. However, an accurate representation of the physics requires a model
which can reproduce both the mean flow and the perturbation field accurately. For
swirling flows, URANS models generally struggle to predict the mean flow swirl
profile accurately (Wallin & Johansson 2000; Dunham et al. 2008), whereas the
mean swirl profile is crucial for vortex breakdown instabilities as seen above. Hence,
we need to adopt an approach which ensures correct mean flow scales. Algebraic
Reynolds stress models might be appropriate (Wallin & Johansson 2000), but are
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624 O. Tammisola and M. P. Juniper

very complicated to linearize even in one dimension (Gupta 2014), while our mean
flow is two-dimensional.

The frozen eddy viscosity performed almost as well as the fully linearized turbulent
viscosity for a cavity flow (Crouch et al. 2007). It has also performed well in swirling
flow studies using local spatio-temporal techniques in injector flows (Oberleithner
et al. 2015). Finally, Camarri, Fallenius & Fransson (2013) obtained a good agreement
with the experimental structural sensitivity region for a porous cylinder flow using
only molecular viscosity (the quasi-laminar approach), and similarly Mettot et al.
(2014b) for a D-shaped cylinder.

In the present study, we start by characterizing the nonlinear dynamics of the swirl
injector in DNS, and extracting the dominant mode shapes and frequencies by POD.
We then construct a Newtonian eddy-viscosity model (Reynolds & Hussain 1972) from
nonlinear simulation data in the manner suggested but not implemented in Mettot
et al. (2014b), and apply this in the global mode and sensitivity computation in the
form of a frozen eddy viscosity. We investigate the instability mechanism for the
dominant spiralling mode in terms of the location of the structural sensitivity and the
relative magnitudes of structural sensitivity tensor components. Finally, we discuss the
observed similarities and differences between the results with frozen eddy viscosity
and molecular viscosity, and between this flow and the D-shaped cylinder.

2. Interpretation of stability analysis around a turbulent mean flow
Mathematical interpretation of the stability analysis around the mean flow is not

as straightforward as the stability analysis around a steady solution of the Navier–
Stokes equations. Nevertheless, a qualitative mathematical and physical interpretation
of mean flow stability results and qualitative criteria for their validity can be found.
The argument below follows the main lines presented in Turton, Tuckerman & Barkley
(2015). In the present study, a triple decomposition of the flow field is introduced
following Reynolds & Hussain (1972):

u= u+ ũ+ u′, (2.1)

where is the time-average operator, (˜ + ) is the phase-average operator, and
u′ = u − u − ũ is the fluctuation with zero phase average. The three terms are the
mean flow (u), the organized wave containing all coherent time-periodic large-scale
motions (ũ), and the stochastic part containing the remaining incoherent turbulent
motions (u′). The equation for the mean flow is obtained by taking the time average
of the Navier–Stokes equations:

U · ∇U=−∇P+∇ · (Re−1S − ũũ− u′u′), (2.2)

while the organized wave satisfies the phase-averaged Navier–Stokes equations,
with (2.2) subtracted:

∂ũ
∂t
+U · ∇ũ+ ũ · ∇U=−∇p̃+∇ · (Re−1s̃− ˜̃uũ− ũ′u′). (2.3)

In the above, S =∇U +∇UT is the mean flow shear stress tensor, and s̃ the stress
tensor of the organized wave. We will proceed by assuming that the coherent motions
consist of discrete fundamental limit cycles and their harmonics, and can hence be
Fourier-decomposed as: ũ≈∑m>0

∑
n 6=0 um,n exp(inωmt).
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Coherent structures and global modes of the flow in a fuel injector 625

For simplicity, let us first consider the case where limit cycles with different m, and
their products, are harmonically unrelated to each other (at the end of the section, we
will return to the case where they are harmonically related). When substituting the
Fourier decomposition of the coherent part into (2.2), we obtain:

U · ∇U=−∇P+∇ ·
(

Re−1S −
∑
m>0

∑
n>0

um,num,−n − u′u′
)
. (2.4)

This shows that the mean flow is influenced by the coherent motions, through
the interaction of each fundamental mode with its conjugate, and the interaction of
each harmonic with its conjugate. The mean flow is also influenced by the Reynolds
stresses arising from the incoherent motions.

Similarly, when substituting the Fourier decomposition into (2.3), we obtain for
n= 1 (the limit cycle fundamental):

−iωum,1+U ·∇um,1+um,1 ·∇U=−∇pm,1+∇ ·
(

Re−1Sm,1 −
∑
n 6=0,1

um,num,1−n − (ũ′u′)m
)
.

(2.5)
Hence, the limit cycle m may be influenced by the coherent motions, through the
interaction of the first harmonic um,2 with the conjugate of the fundamental um,−1, and
the interaction of each higher harmonic with the conjugate of its preceding harmonic.
It may also be influenced by (ũ′u′)m, which is the oscillation of the incoherent
Reynolds stresses at frequency ω=ωm.

Let us now introduce the linearized Navier–Stokes operator, where the linearization
is performed around the mean flow, acting on any velocity field u:

LU(u)=U · ∇u+ u · ∇U+∇p−∇ · (Re−1u). (2.6)

Equation (2.5) can be formally written as:

LU(um,1)= iωmum,1 −N1 − ũ′u′. (2.7)

Here, N1 is a nonlinear harmonic interaction term given by:

N1 =∇ · (um,2um,−1 + um,−1um,2 + um,3um,−2 + um,−2um,3 + · · ·). (2.8)

No assumptions have been introduced so far, apart from the coherent motions being
discrete (and this assumption could be relaxed by writing the coherent motions as an
integral instead of a sum). It can be seen that (2.5) forms a linear eigenvalue problem
for the fundamental mode um,1 if and only if either of the two options is true:

(i) N1 + ũ′u′ = 0.

As noted by Turton et al. (2015), we observe that the fundamental mode m is then
an exact eigenmode of the Navier–Stokes operator linearized around the mean flow:

LU(um,1)= iωum,1, (2.9)

with the eigenvalue ω which has zero growth rate and the frequency of the
fundamental limit cycle.
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626 O. Tammisola and M. P. Juniper

(ii) N1 + ũ′u′ =A um,1

where A is a linear operator. Then, the fundamental mode m is then an exact
eigenmode of the modified Navier–Stokes operator (LU +A ):

(LU +A ){um,1} = iωum,1. (2.10)

Again, the fundamental mode m will then have zero growth rate, and the same
frequency as the limit cycle. (The first option is actually a special case of the second
one, obtained where A = 0.)

To relate the above constraints into qualitative properties of a flow model, we
proceed similarly to Turton et al. (2015), who pointed out that if the amplitude of
the fundamental mode is ‖um,1‖ = ε, the harmonics often decay as um,n ∝ O(εn).
If this is the case, then N1 = O(ε3) (where the first term of N1 is the largest:
∇ · (um,2um,−1)=O(ε3)), and if Aum,1 = ũ′u′, then:

(L +A ){um,1} − iωum,1 =O(ε3). (2.11)

Since the right hand side terms are O(ε3), the fundamental limit cycle is still
approximately an eigenmode of (L +A ). In particular this assumption approximately
implies that the second harmonic needs to be an order of magnitude weaker than
the fundamental. A similar argument based on the relative amplitude of the second
harmonic has been emphasized by several authors, for example Sipp & Lebedev
(2007). In the present study, we have verified a posteriori that the second harmonic
is invisible among the broadband turbulent spectrum, and hence we conclude similarly
to Turton et al. (2015) that N1 6 O(ε2) in this flow.

Now, for mean flow stability to reproduce the fundamental limit cycle, the
broadband turbulent motions still need to satisfy A um,1 = ũ′u′. In this study, we
will assume the eddy-viscosity hypothesis for the incoherent motions, such that:
µt(S?m,1) = ∇ · (ũ?′u?′), where µt denotes turbulent viscosity and the stars denote
dimensional variables.

Finally, in the case that the frequencies of other limit cycles are harmonically related
to the limit cycle under study, their amplitudes also need to be an order of magnitude
smaller than that of the dominant limit cycle under investigation (and their harmonics
need to decay as rapidly as for the dominant mode). If a product of two fundamental
limit cycles (m= i and m= j) has a frequency equal to the dominant mode (m= 1),
i.e. if ω1 = ωi ± ωj, then they may contribute to (2.5) but are by definition 6O(ε2).
The sum of such modes needs to converge rapidly enough to remain O(ε2).

2.1. Summary of main assumptions
Summarizing the main points from the above, the approach of mean flow stability as
applied here relies on the following three assumptions:

(i) the harmonics have a much smaller amplitude than the fundamental mode(s)
under investigation;

(ii) no other modes or their products are harmonically related to the dominant
mode(s) under investigation (or, if they are harmonically related, the total
amplitude of such modes remains an order of magnitude weaker than the
dominant mode(s));

(iii) the eddy-viscosity hypothesis is appropriate for modelling of the remaining
turbulent fluctuations.
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Coherent structures and global modes of the flow in a fuel injector 627

Strictly speaking, all the above criteria can only be verified a posteriori from a fully
nonlinear simulation. However, if the shape and frequency of the linear global mode
approximates well the leading POD mode, and if its growth rate is approximately
neutrally stable, this can serve as a check of consistency of the model.

An important distinction needs to be made here to avoid misunderstanding. The
mean flow stability analysis does not assume that nonlinear interactions between
different eigenmodes and their harmonics have never happened in this flow; in our
case, such interactions, between some eigenmodes, have created the turbulent flow
field in the first place. What we do assume is that the amplitudes of such nonlinear
interactions are weak in the final flow field; they are of much lower amplitude than
the dominant eigenmode and the chaotic turbulent fluctuations. If this holds true for
the dominant limit cycle(s), then mean flow stability will approximate the frequency
and mode shape of that limit cycle(s).

2.2. Structural sensitivity around mean flows
Finally, the structural sensitivity of the dominant eigenmode is considered in the
present study. Structural sensitivity has the same meaning when computed around
the mean flow, as around the base flow. The structural sensitivity describes the
response of the eigenvalue to generic feedback from the perturbation variables into
the perturbation governing equations. It does not have any influence through changes
to the mean flow. Therefore, it makes the same assumptions as the perturbation
governing equations and therefore is valid if they are valid. On the other hand, if
responses to specific perturbations (such as suction on the boundary) are considered,
the sensitivity operator may need to incorporate a model of changes to the mean flow
and Reynolds stresses, but this is not the case for structural sensitivity.

2.3. Relation to mean-field theory and weakly nonlinear stability approaches
The above approach can be related to the mean-field theory by Stuart (1958, 1971),
used and developed in a long line of studies for model reduction. A Galerkin
projection of the Navier–Stokes equations formally written as:

d
dt

ai = 1
Re

N+1∑
j=0

lijaj +
N+1∑
j=0

qijkajak, (2.12)

where i> 0, lij is the linear operator part of Navier–Stokes, qijk the nonlinear operator
part originating from the advection term and ai are constant coefficients. Here, the
mean flow is the zeroth mode:

u0 =U. (2.13)
The mode number N + 1 is the zero-frequency shift mode, representing the effect of
coherent Reynolds stresses on the mean flow. (In the special case of a flow saturating
towards a limit cycle starting from a steady base flow, the shift mode can be
described as the difference between the period-averaged mean flow and the base flow:
U = Us + u∆. Where U is the mean flow, Us the steady solution to Navier–Stokes
equations.) The minimal Galerkin system for a simple limit cycle is obtained
with N = 2:

u= u0 +
2∑

i=1

aiui + a∆u∆, (2.14)

where the modes 1–2 are the real and imaginary parts of the limit cycle (obtained
in Noack et al. (2003) from the leading mode pair in a POD decomposition of
the saturated state), and u∆ is the shift mode. The system is further simplified
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628 O. Tammisola and M. P. Juniper

(Noack et al. 2003) by a Kryloff–Bogoliubov ansatz to yield the amplitudes:

a1 = A(εt) cos (ωt), (2.15)
a2 = A(εt) sin (ωt), (2.16)

a∆ = B(εt), (2.17)

where ε is a slow time scale much longer than the limit cycle oscillation period.
This minimal Galerkin system for a simple limit cycle reproduces the qualitative
behaviour of the cylinder wake, such as saturation to the limit cycle from steady
state, and influence of stabilizing control (Noack et al. 2003). Relating this to (2.4),
we can interpret the shift mode as a change of the mean flow due to a change
in the amplitude of the coherent fluctuation, through the term: ∇ · (u1,1u1,−1). The
assumptions behind the minimal system are essentially the same as in the present
study. The energy transfer from higher harmonics to the fundamental mode is ignored,
while the energy transfer from the fundamental mode to the mean flow is taken into
account. Similarly to the shift mode, a one-way effect of high-frequency actuation
on Reynolds stresses has also been incorporated (Luchtenburg et al. 2009), and as in
the present study the effect of turbulence using different eddy-viscosity models (Östh
et al. 2014; Protas et al. 2015). In some cases, a priori criteria for validity of the
model may be found. Sipp & Lebedev (2007) formulated a weakly nonlinear analysis
of flows near the critical Reynolds number for bifurcation, and formulated criteria
for validity of mean flow stability analysis based on Landau coefficients µ and ν.
Of these, µ represents the magnitude of the interaction between the fundamental
eigenmode and the zeroth harmonic (i.e. the mean flow change induced by the
eigenmode, which can be compared to the shift mode), while ν was the magnitude
of the interaction between the eigenmode and its first harmonic. Consistently with
the other models, ν � µ (small relative amplitude of the harmonic) indicated good
behaviour of the mean flow stability. However, the criteria for frequency and growth
rate were not the same. The mean flow stability would return a marginally stable
mode if the ratio of imaginary parts (µi/λi) was small, while the frequency of the
limit cycle would be well approximated if the ratio of the real parts (µr/λr) was
small. This explains the observation that in many mean flow analyses the frequency
and shape of the limit cycle is well reproduced, while the growth rate may remain
strictly positive (especially when eddy-viscosity models are not used).

3. Problem definition
The geometry consists of an inner pipe (without flow), and an outer coaxial inlet

called ‘the swirler’ in this manuscript. Two non-dimensional parameters define the
characteristics of the flow: the Reynolds number Re and the swirl ratio Sw. The
Reynolds number is defined as

Re= UeD
ν
, (3.1)

where Ue is the mean velocity at the swirler exit (Ue=Q/A, where Q is the flow rate
and A the swirler exit area), and D is the outer diameter of the swirler at the exit
(these scales are illustrated in figure 1). The swirl ratio is defined as:

Sw = We

Ue
, (3.2)

where We is the mean azimuthal velocity at the swirler exit. By these definitions, the
non-dimensional parameters become Re= 4800 and Sw= 1.1. The coordinate system
is defined in figure 1.
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3.1. Eddy-viscosity model
To proceed from (2.5) to create an eddy-viscosity model for the incoherent
fluctuations, we need to set ˜̃uũ≈ 0 and ũũ= 0. We can now define an eddy-viscosity
field for both the mean flow and the organized wave by the use of the following
Boussinesq relations between Reynolds stresses and the turbulent viscosity:

u′u′ = 2
3 kI − 2ν tS (3.3)

ũ′u′ = 2
3 k̃I − 2ν tS̃ − 2ν̃tS, (3.4)

where k=u ·u is the kinetic energy of the organized wave, and I is the identity tensor.
We now assume that the eddy-viscosity field itself is not oscillated by the perturbation,
ν̃t = 0, and similarly for the turbulent kinetic energy: k̃= 0, to obtain:

u′u′ = 2
3 kI − 2ν tS (3.5)

ũ′u′ =−2ν tS̃. (3.6)

This means that the eddy viscosity νt can be determined from the averages using (3.5),
and used as is for the oscillating Reynolds stresses (3.6). This is called the Newtonian
eddy model. Looking carefully, the Newtonian eddy model is slightly inconsistent in
that the mean flow averages will always contain the coherent fluctuations. Hence, it
is strictly valid only when ˜̃uũ≈ 0 and ũũ= 0 are both very small. This model was
pointed out by Reynolds & Hussain (1972) to work best for ‘relatively low frequency
weak oscillations with wavelength considerably larger than the dominant scales of
turbulence’.

To determine νt, we take the Frobenius product between (3.5) and S, yielding:

ν t =−u′u′ : S
2S : S

, (3.7)

where : is the Frobenius product, defined in Cartesian tensor notation by A :B=AijBij.
Finally, we obtain the modified linear stability equation:

σu+U · ∇u+ u · ∇U=−∇p+∇ · [Re−1
eff (∇u+∇uT)], (3.8)

where
Reeff = ν

(ν + ν t)
Re, (3.9)

and the complex frequency will be denoted by σ =−iω in the rest of this paper.
We note that a different approach could have been applied here, by performing the

whole analysis around a turbulence model equation (‘base flow approach’), such as
Unsteady RANS with the Spalart–Allmaras model as in Meliga et al. (2012b). In
that case, the base flow would be a fixed point of the URANS equations, which
approximates the mean flow within the limit of validity of the turbulence model. The
turbulence model (e.g. Spalart–Allmaras) would need to be linearized around the fixed
point. This approach is mathematically fully consistent, and could be interesting to
attempt in a future study. There is, however, a reason to believe that in swirling
flow like the present one, the results from URANS might not be accurate due to a
bad estimation of the mean flow swirl profile. A mathematically and physically fully
consistent approach would be to linearize an algebraic Reynolds stress model (Wallin
& Johansson 2000), which is very complicated even in 1D (Gupta 2014), and was
therefore considered to be out of the scope of the present study.
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3.2. Linear global modes
Exploiting the homogeneity of the mean flow in the azimuthal direction, the
perturbation q takes the form:

u(z, r, θ, t)= û(z, r) exp(σ t+ imθ), p(z, r, θ, t)= p̂(z, r) exp(σ t+ imθ). (3.10a,b)

Given an azimuthal wavenumber m, (3.8) constitutes a linearized eigenvalue problem
with the complex eigenvalue σ . The imaginary part of the eigenvalue, σi, is the
angular oscillation frequency of the global mode, and the real part, σr, gives the
growth rate (usually called amplification rate in mean flow analysis). The Strouhal
number is obtained from St= σi/2π. The growth rate does not have a straightforward
physical meaning when computing the modes around a mean flow. Because an
oscillatory instability leads to a constant amplitude limit cycle around the mean,
a close to neutral (zero) growth rate is expected for an oscillator in a mean flow
analysis (Noack et al. 2003). For the stability analysis, we set a zero Dirichlet
velocity boundary condition for all boundaries.

The governing equations for the corresponding adjoint eigenmodes (u+, p+) can be
derived for example by using the Lagrange identity (Giannetti & Luchini 2007). In
this study, the continuous adjoint equations of (3.8) with varying Reeff and (3.10) have
not been explicitly derived. Instead, a so-called discrete adjoint approach is utilized
(Schmid & Henningson 2001), where the adjoint equations are numerically derived
from the discretized matrix form of (3.8). Hence, no separate boundary conditions are
set for the adjoint. For the molecular viscosity cases, a continuous adjoint formulation
with zero Dirichlet boundary conditions is used, and verified against existing adjoint
formulation in Nek5000 (appendix A). In both cases, the adjoint is normalized to
satisfy:

∫
V u+∗ · u dV = 1, where ∗ denotes the complex conjugate and V the volume

of the computational domain. Finally, the structural sensitivity is defined as the region
where a local perturbation of the equation system results in the largest drift of the
eigenvalue, and is given by |u||u+|. Here, the structural sensitivity is interpreted as
the core of the instability or wavemaker (Giannetti & Luchini 2007).

4. Numerical methods

Two numerical codes have been used in this study. The Nek5000 code (Fischer
1997; Fischer, Lottes & Kerkemeier 2008) was used for time integration of the
nonlinear Navier–Stokes equations, which generated the DNS results and the POD
modes presented in § 5.1. The global mode results without eddy viscosity included in
appendix A were also obtained using Nek5000. The global mode results in the bulk of
the manuscript were obtained by using the finite element package FreeFem++ (Hecht
2012). The variational formulation of the direct global mode equations including
variable viscosity was derived and implemented in this work.

4.1. Nonlinear simulations and POD
Nek5000 is based on a spectral element method (Maday & Patera 1989), which
combines the accuracy of spectral methods with the flexibility of finite element
methods. For details about the code implementation see Maday & Patera (1989). The
same implementation including the Arnoldi method for modes in appendix A was
used also in Lashgari et al. (2014).
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In the DNS, the nonlinear Navier–Stokes equations were integrated forward
in time for 481 non-dimensional time units, corresponding to around 40 flow
through times from the nozzle inlet to the chamber exit. This simulation was run
on high-performance computing clusters using between 256 and 1024 cores in
parallel, and required over 100 000 CPU hours to complete. The time integration was
performed by an explicit second-order extrapolation for the nonlinear terms, and an
implicit second-order backwards-differentiation for the viscous terms, as in previous
turbulent diffuser studies in Nek5000 (Ohlsson et al. 2010). The non-dimensional
time step was kept at 1t = 1 × 10−4 to satisfy the Courant–Friedrichs–Lewy (CFL)
condition. Our accuracy in time integration should compare well with other turbulent
flow studies with spectral element methods, for example Ohlsson et al. (2010).

The computational grid used for the DNS had 58 720 spectral elements of order
p = 6, giving 12.7 million grid points. The grid nearest the centreline contains a
cylindrical region with a stretched Cartesian grid, similar to the grid used for a DNS
of pipe flow in Nek5000 (El-Khoury et al. 2013). In the present grid, this region
contains 128 elements over the axial cross-section, and extends from r= 0 to the outer
radius of the inner pipe at r = 0.14, where it attaches to an outer cylindrical grid.
For r > 0.14, the grid is fully cylindrical with 32 elements over the circumference,
which leads to a denser element distribution closer to the centreline where most of
the interesting dynamics occur, and a coarser element distribution near the outer wall
of the combustion chamber.

This study focuses on the large-scale structures, especially the precessing vortex
core, so detailed turbulence statistics such as wavenumber spectra (which would
require storing a huge number of snapshots) have not been computed. To ensure
that the resolution is sufficient for the task at hand, the following checks have been
made on the nonlinear simulation results. First, we investigated the sensitivity of the
precessing vortex core to the mesh resolution by decreasing the polynomial order
inside each element. Going from p = 6 to p = 5 (42 % less degrees of freedom),
the frequency from PSD signals of the precessing vortex core remained unaltered at
St= 0.67. Only when going from p= 6 to p= 4 (70 % less degrees of freedom), did
the frequency change slightly to St= 0.70. The frequency obtained with p= 6 is also
exactly the same as in experiments of Midgley et al. (2005) at much higher Reynolds
number, confirming that the same physics is present. Furthermore, instantaneous
velocity contours (showing the precessing vortex core) were confirmed to remain
qualitatively the same with the coarser mesh. Finally, we investigated to what extent
the turbulent motions are captured. In spectral element methods, the derivatives are
not continuous across the spectral element boundaries, but become very close to
continuous with increasing resolution. Therefore, in DNS using spectral element
methods, a good indicator of adequate resolution of the turbulence is whether or
not the vorticity or helicity fields look continuous across element boundaries (e.g.
El-Khoury et al. 2013). Figure 2 shows typical contours of the helicity in the same
mesh used in the DNS in this paper. No discontinuities are seen across the element
boundaries. Furthermore, the vorticity shows the expected physical trends. Upstream
in the chamber (figure 2a), we observe fine-scale vorticity, particularly in the vortex
core, surrounded by a thin ring of vorticity originating at the inlet wall (r = 0.5).
Near the downstream wall of the chamber (figure 2b), the vorticity has larger scales
and is smoothly distributed along the whole radial extent, although it is still strongest
near the centre.

The mean flows in the present study were computed by continuously time-averaging
the velocity fields at every 10th time step over a time period of 150 non-dimensional
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(a) (b)

(c)

FIGURE 2. (Colour online) Vorticity (helicity) from DNS at different axial cross-sections.
The mesh is shown in red on top. This shows that the vorticity is continuous across the
element boundaries, which is a sign of adequate resolution in spectral element method
simulations of turbulent flows. (a) Typical contour upstream in the chamber (z = 0.2).
(b) Typical contour downstream in the chamber (z= 4). (c) Contours at z= 4 in a different
colourscale (see colourbar), emphasizing regions of weak helicity.

units. The mean flow was also averaged over the azimuthal direction, by interpolating
the values at every grid point (zn, rn, θn) into (zn, rn, k2π/32), k = 1, . . . , 32, and
taking the average over all k.

The POD modes were computed based on two different series of snapshots from
DNS as follows. First, a series of 153 snapshots over a long time interval, T = 153,
was saved and used to obtain the spatial shapes. A long time interval between the
snapshots, 1t = 0.5, was chosen to make them statistically independent. Second, a
shorter series of frequently spaced snapshots, 1t= 0.03 apart, was used to obtain the
mode frequencies. In both cases the procedure was as follows. First, the mean velocity
field U (obtained earlier) was subtracted from every snapshot. Subtracting the mean
flow before performing the POD removes the mean flow mode, which otherwise would
be the highest-energy mode. A similar zero-frequency mode will however be obtained
at a lower energy, representing the difference between the mean flow averaged over
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all time steps, and the average over a finite number of snapshots. The snapshots with
mean flow subtracted were then saved only on the part of the grid extending from
z=−1 to z= 4 in the axial direction, and with a lower polynomial order p= 4. This
was done in order to save memory so that postprocessing in Matlab became possible,
and in order to focus on the region where the coherent structures were visible. Next,
the snapshots were uploaded into Matlab and a matrix formed with these columns:

XX = [U(t0)−U,U(t0 + δt)−U, . . . ,U(t0 + T)−U]. (4.1)

The POD modes were obtained from the singular value decomposition of the snapshot
matrix: XX = USVT, where U contains the POD modes, the energies are obtained
using S, and the time coefficients are a= SVT.

4.2. Extraction of the eddy viscosity from POD
To compute the turbulent Reynolds stresses in DNS, we used the already computed
POD modes from the long time series. First, the snapshot matrix XX was reconstructed
while setting to zero the time coefficients for the first four POD modes, which
represent coherent structures, and the fifth POD mode, which represents the mean
flow:

XX new =
N∑

k=6

U(:, k)a(k, :). (4.2)

Now, every column of XX new is a snapshot of the original time series excluding
the coherent structures, which we label a ‘reduced snapshot’. Second, the Reynolds
stresses were computed and an average taken over all reduced snapshots. Third, the
stresses were transformed to cylindrical coordinates and averaged over the azimuthal
direction in the same way as the mean flow. Finally, they were interpolated back to
Cartesian coordinates, and combined with mean flow stresses to form the product
shown in (3.7). It was observed that the ratio between the Reynolds stresses and
mean flow stresses can become ill-conditioned in regions where both of them are
extremely small. Hence, a cutoff of 10−4 was employed on both stresses, and a cutoff
of 100 was employed on the turbulent viscosity.

4.3. Linear global modes
We implemented the global cylindrical linear stability equations with an azimuthal
wavenumber m and a variable viscosity using the discretization and coding environ-
ment provided by FreeFem++ in combination with ARPACK, in the same way
as Tammisola et al. (2014) for a planar Cartesian geometry. The adjoint stability
equations were also derived and implemented (continuous adjoint approach) in the
case of molecular viscosity. For the variable viscosity case, the adjoint equations
were not derived explicitly, but the adjoint modes were obtained using the conjugate
transpose of the direct system matrix (discrete adjoint approach).

The spatial domain was discretized by a triangular finite elements mesh using a
Delaunay–Voronoi algorithm, leading to a mesh with 213 620 triangles and 108 486
vertices. We employed the pair P2–P1, consisting of piece-wise quadratic velocities
and piece-wise linear pressure (Taylor–Hood elements), leading to 106 degrees of
freedom. The Nek5000 code was also used to compute modes without eddy viscosity
in appendix A. The eigenmodes in Nek5000 were computed directly from the ansatz
u(x, y, z, t) = û(x, y, z) exp(σ t), without setting an azimuthal wavenumber. This

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

, o
n 

27
 Ju

l 2
01

8 
at

 1
4:

18
:0

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

86

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.86


634 O. Tammisola and M. P. Juniper

means that the obtained eigenspectrum from Nek5000 was a combination of all
azimuthal wavenumbers. The two codes were cross-validated against each other, and
the resolution independence of the eigenvalues tested, using molecular viscosity. The
eigenvalues are documented in table 1 in appendix A.

5. Results
5.1. Nonlinear simulation

Here, we consider the nonlinear dynamics of the flow in the fuel injector at Re=4800.
We start from the mean flow, i.e. the time-averaged velocity field from DNS, shown
in figure 3 (velocity components) and 4 (streamlines). The flow develops two large
recirculation zones inside the combustion chamber, which is characteristic of swirl
injectors (Syred 2006). The inner wall separation develops into a central zone that
starts near the centreline and expands radially, covering the whole back wall. This
zone is in turn divided into two recirculation bubbles: one closer to the inlet and
one closer to the back wall. Another large coaxial recirculation zone develops near
the upstream wall of the combustion chamber through separation at the outer edge of
the coaxial inlet and confinement by the upper wall. The reason for the formation
of the central recirculation zone is analogous to the formation of an axisymmetric
vortex breakdown bubble in a swirling jet, explained by Syred (2006) in the case of a
straight combustor. For a swirling jet, the radial expansion of the potential vortex core,
with its associated normal pressure gradient, creates an adverse pressure gradient along
the centreline, and the flow separates, forming a vortex breakdown bubble. For the
Turbomeca coaxial fuel injector, the flow separates inside the nozzle for two reasons.
The first reason is that axisymmetric vortex breakdown occurs when the combination
of swirl (tangential velocity) and the Reynolds number are high enough (Ruith et al.
2003). In the upstream, contracting part of the inlet, the flow contracts in the radial
direction (the radial velocity is shown in figure 3b), creating a high magnitude of
swirl (3c) near the inner wall of the outer channel due to the conservation of angular
momentum, and the swirl profile there resembles a potential vortex. The axial flow
velocity (3a) is increased in the contraction by mass conservation, and hence the local
Reynolds number increases. The second reason for vortex breakdown to occur inside
the nozzle is that the area of the nozzle increases again with the straight outer wall
at z>−0.5, strengthening the expansion of the vortex core (3c).

The smooth mean flow is very different from the instantaneous flow structures that
are shown in figure 5(a,b). Snapshots of the axial velocity are shown at two different
time instants, over an azimuthal cross-section of the domain (θ = π/2). The flow
starts as laminar through the coaxial inlet, but when it separates at its inner wall
near the combustion chamber, the separation point oscillates back and forth towards
the centreline in a violent spiralling motion. This large-scale motion is visible in (b),
where the axial velocity field is clearly asymmetric with respect to the centreline. The
same region in (a) displays a Kelvin–Helmholtz-like wavy pattern which is symmetric
with respect to the centreline over the cross-section, indicating an oscillation with
an even azimuthal wavenumber. Apart from the large scales, both subfigures show a
continuous range of smaller spatial scales. The flow at the separation zone near the
central inlet, and downstream in the combustion chamber, becomes turbulent.

To give an idea of the temporal scales, the temporal probe signal data from
different parts of the domain is shown next. The power spectral density (PSD) of the
instantaneous azimuthal velocity is shown in figure 6. The probe at A in figure 6(a) at
the centreline near the chamber inlet (z= 0.5, r = 0) shows a clear peak at Strouhal
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FIGURE 3. (Colour online) Mean flow from DNS at Re = 4800: (a) axial velocity,
(b) radial velocity, (c) azimuthal velocity.

number St = 0.67 from the oscillating separation point. This value is exactly the
same as in experiments of Midgley et al. (2005) at higher Re. The probe at B in
figure 6(b) shows two peaks: a large sharp peak St = 0.67 and a small bump at
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FIGURE 4. Mean flow from DNS at Re = 4800, contours of the axial–radial velocity
streamfunction.

St = 1.45 (St = 1.39 in experiments of Midgley et al. (2005)). The probe at C in
figure 6(c) shows no visible peaks but only broadband turbulence.

To characterize the coherent structures behind the spectral peak and the bump, we
have performed proper orthogonal decomposition (POD) on two different series of
snapshots, as explained in § 4.2, the first to obtain the spatial structures and the second
to resolve the temporal frequencies. The two most energetic structures from POD are
contained in two mode pairs: the first mode pair (POD modes 1 and 2) accounts for
17.9 % of the total energy, and the second mode pair (modes 3 and 4) for 5.4 %. The
following two POD mode pairs (6–9) have a spiralling structure (m = 1), and each
contribute 2 % of the energy. The POD mode 5 is the remnant of the zero-frequency
mean flow mode, as explained in § 4.1.

As is typical for POD modes of oscillating flows, the two modes in each pair
represent the same oscillation but with an azimuthal phase shift between them. This
indicates that each mode pair represents one azimuthally travelling wave (where the
group speed may be zero or finite). Mode 1 is shown in figure 7(a,c,e), and mode 3 in
(b,d,e). In (a,b), 3D contours of the axial velocity are shown, as seen from the front
of the injector. This clearly shows that the first mode pair (a) depicts the precessing
vortex core (m = 1), and the second mode pair (b) reveals a double-helical mode
(m = 2). Both of these structures were seen in previous experiments (Midgley et al.
2005) and LES (Dunham et al. 2008), where both modes had equal magnitudes in
the PSD spectrum of the inlet probe signal. At Re = 4800, however, the precessing
vortex core dominates over the double-helical mode in both the PSD spectrum of the
probe signals, and in the POD energies.

Despite the structures still being noisy due to the limited number of snapshots, the
azimuthal cross-sections shown in figure 7(c,d) give a picture of the mode shapes.
First, both modes are efficiently contained in the region z = −1 to z = 3, diffusing
into the turbulence downstream. Second, the wavelength of the precessing vortex
core (c) seems to be longer (λ ≈ 2 near the chamber inlet) than the double-helical
mode (d, λ ≈ 1.5). The wavelengths were extracted from these figures manually
as the distance between two consecutive negative peaks (dark colour) in the wave
propagation direction.
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(a)

(b)

FIGURE 5. (Colour online) Instantaneous velocity from DNS at Re= 4800, axial velocity
at a cross-section of the injector, at two different time instants (a and b). Light colours
indicate high velocity positive in the streamwise direction, and dark colours negative
velocity in the streamwise direction. Contours of (half of) the injector are also visible.

To improve the spatial resolution of the POD modes, for comparisons with global
modes later on, we have used the knowledge of their azimuthal wavenumber and
filtered them by a Fourier decomposition in the azimuthal direction, where only the
m = 1 component was kept for modes 1–2, and the m = 2 component for modes
3–4. This approach increases the amount of available data, as many azimuthal cross-
sections are used to determine each mode shape, rather than only one cross-section. In
addition, it acts as an azimuthal low-pass filter. The effect of this procedure is similar
to taking the azimuthal average of DNS mean flows to improve their quality. The
mode shape after the azimuthal filtering becomes substantially smoother and more well
defined, while retaining all the large-scale features, as can be seen in figure 7(e, f ). All
velocity components of the azimuthally filtered POD modes are shown for reference
in figures 8 (modes 1 and 2), and 9 (modes 3 and 4). From these figures, the detailed
structure of the two POD mode pairs can be seen.

The above long-time snapshot series has a long time interval between consecutive
snapshots (1T = 1), which prevents us from extracting frequency information from it.
To obtain the frequency content of the most energetic structures, a second POD was
performed with 864 frequently spaced snapshots, and a fast Fourier transform (FFT)
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FIGURE 6. (Colour online) (a) Illustration showing the location of the probe signals A,
B and C in the z–r plane (eight other probes were also recorded). (b) PSD spectrum of
probe A at z= 0.25, r= 0, (c) PSD spectrum of probe B at z= 0.05, r= 0.35 (θ =π/4)
(d) PSD spectrum of probe C at z= 1, r= 1.5 (θ =π).

taken on their time coefficients. The spatial shapes of modes 1–4 were nearly identical
to the long time series. The peak amplitudes of the modes gave the frequency 0.70±
0.06 for the precessing vortex core mode (POD mode 1–2), and 1.37± 0.06 for the
double-helical mode (POD mode 3–4).

By normalizing the FFT coefficients of POD mode n with the energy of POD mode
n, it is also possible to compare the relative amplitudes from different POD modes at
each frequency. The FFT coefficients for the first 11 POD modes normalized by their
energies are shown in figure 10. The mode pair 1–2 has a clear high peak at St= 0.70,
showing that this POD mode represents an efficiently monofrequent coherent structure.
The mode pair 3–4 contains a broader distribution of frequencies, indicating that this
mode may be a convectively unstable mode. The peak amplitude of mode 3–4 is an
order of magnitude lower than that of mode 1–2. Any other modes have still an order
of magnitude lower peak amplitudes (figure 10b shows them in a double-logarithmic
scale), and still broader FFT distributions. Based on this data, we draw the following
two conclusions. First, the precessing vortex core (mode 1–2) is a monofrequent POD
mode, and can be compared with temporal linear global modes later on. Second, the
precessing vortex core is unlikely to have significant nonlinear interactions with any
other coherent structure (including harmonics). However, the precessing vortex core
is very likely to interact with the broadband random turbulent fluctuations, which
when all added together will contain a significant amount of energy. To take the extra
dissipation caused by these random fluctuations into account, we next create an eddy-
viscosity model based on the bulk of (incoherent) POD modes.
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FIGURE 7. (Colour online) POD mode 1 and mode 3 from the two leading mode pairs
(mode 2 is the same as mode 1 with π/2 phase difference, and mode 4 is the same as
mode 3 with π/4 phase difference): (a) mode 1, 3D contour of axial velocity; (b) the
same for mode 3; (c) mode 1, axial velocity at the azimuthal cross-section at θ = π/2;
(d) the same for mode 3; (e) mode 1, the same as (c) but filtered by FFT in the azimuthal
direction; ( f ) the same for mode 3.

6. Turbulent viscosity from DNS
To approximate the effect of turbulent dissipation and its modelling on the linear

global modes in the next section, we have extracted an approximate eddy-viscosity
distribution from our DNS data using the simple Newtonian eddy model, as very
recently used by Oberleithner et al. (2015), and also suggested by Mettot et al.
(2014b). The idea is based on a triple decomposition of the turbulent flow field:

utot =U+ ũ+ u′, (6.1)
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FIGURE 8. (Colour online) The leading Fourier component only (m = 1) for the first
POD mode pair: mode 1 (a,c,e) and mode 2 (b,d, f ). (a,b) Axial, (c,d) radial and (e, f )
azimuthal velocity.

where U is the mean flow, ũ are the large-scale coherent structures, and u′ the small-
scale turbulent fluctuations, which we assume can be modelled by an eddy viscosity
(§ 3.1). To extract the latter from the DNS data, we first estimated that the large-scale
coherent structures ũ would be represented by the first four POD modes (the m= 1
and m = 2 modes analysed in § 5.1). We then reconstructed the flow field using all
the other POD modes while setting the time coefficients for the first four to zero, to
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FIGURE 9. (Colour online) The leading Fourier component only (m= 2) for the second
POD mode pair: mode 3 (a,c,e) and mode 4 (b,d, f ). (a,b) Axial, (c,d) radial and (e, f )
azimuthal velocity.

obtain u′. Further, we extracted an isotropic turbulent viscosity as detailed in § 4.2.
Contours of the turbulent viscosity (normalized by the molecular viscosity) are shown
in figure 11. The turbulent viscosity is seen to be negligible in the upstream part of
the nozzle and near the walls, while it is very high (µt/µ> 10) in most parts of the
combustion chamber, where turbulence kinetic energy is high and mean flow stresses
comparably low due to the expansion.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

, o
n 

27
 Ju

l 2
01

8 
at

 1
4:

18
:0

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

86

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.86


642 O. Tammisola and M. P. Juniper

0

1

2

3

4

5

6

7

2 4 6 10010–1
102

104

106

108Mode 2
Mode 1

Mode 5
Mode 6
Mode 7
Mode 8
Mode 9
Mode 10
Mode 11

Mode 3
Mode 4

(a) (b)

FIGURE 10. (Colour online) (a) The FFT coefficients of the chronos (time-domain)
part of the first 11 POD modes, multiplied by their respective energies (see legend for
lines/markers). The figure illustrates that POD mode pair 1–2 (blue online) is relatively
monofrequent, and also is the by far most energetic coherent structure in the flow. A
weaker coherent structure is seen in POD mode pair 3–4 (red online). (b) The same but
shown in a logarithmic scale on both axes.
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FIGURE 11. (Colour online) Contours of µt/µ, where µt is the turbulent viscosity
extracted from the POD modes excluding the coherent structures (1–4). µt is used to
form the effective Reynolds number ((3.9) and (3.7)). Observe that the contours are
logarithmically spaced.

7. Precessing vortex core as a global mode
We now seek to identify the precessing vortex core (PVC) as a global mode, with

the aim of quantifying its structural sensitivity. Structural sensitivity can indicate
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FIGURE 12. (Colour online) The global linear eigenvalue spectrum around the DNS mean
flow (figure 3) at Re= 4800: (a) modes with m= 1, (b) modes with m= 2.

where in the flow the PVC originates, and where the PVC may be influenced by
changes in the flow and geometry.

The linear global modes were computed in FreeFem++ around the mean flow
obtained from DNS. The whole eigenvalue spectra were first computed with different
azimuthal wavenumbers on the coarser mesh with 5.5 × 105 degrees of freedom.
The computation was then repeated using a shift around the dominant mode, on
a finer mesh with 1.23 × 106 degrees of freedom, and the finer mesh was used
to obtain results for eigenmode shapes and wavemakers. To include the effect of
turbulent dissipation on the eigenmodes, the turbulent viscosity (figure 11) was used
to generate a spatially varying Reynolds number Reeff (z, r, θ). The effective Reynolds
number was subsequently used in the stability computations. This is the approach in
which the Reynolds stresses themselves are not linearized, named the ‘frozen eddy
viscosity’ approach in § 1.

The global eigenvalue spectra computed this way are shown in figure 12 for
azimuthal wavenumbers m = 1 (a) and m = 2 (b). To find oscillators, we turn our
attention to the discrete global modes, separated from the continuous branch (which
represents convective instabilities). Precisely one oscillator candidate is found: a m= 1
mode with close to neutral growth rate. All other modes have very low growth rates.
Modes at higher wavenumbers (m= 3, m= 4) have also been computed, and have an
even lower growth rate.

To confirm that the selected global mode captures the correct physics, we compare
the nearly neutral m= 1 global mode with the most energetic POD mode pair, which
was seen to be very close to monofrequent (figure 10). The frequency of the linear
global mode is St= 0.74, which compares very well with the POD mode frequency:
St = 0.7. The resulting direct global instability eigenmode with m = 1 is shown in
figure 13. The global mode is shown in (a,c,e), and the corresponding POD mode
from DNS in (b,d, f ) for comparison. The agreement with the POD mode shapes is
excellent: the wavelength matches throughout the whole domain, and the shape and
amplitude distribution also agree well.

With the goal of finding the wavemaker of the precessing vortex core more,
its corresponding adjoint eigenmode has also been computed. The adjoint mode
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FIGURE 13. (Colour online) m = 1 mode. (a,c,e) Global mode: (a) axial, (c) radial,
(e) azimuthal velocity. (b,d, f ) POD mode 1 from DNS: (b) axial, (d) radial and
( f ) azimuthal velocity.

represents the optimal initial condition to excite the global mode (Chomaz 2005). The
magnitude of the adjoint velocity eigenmode is shown in figure 14(a). The adjoint
mode is strongest inside the nozzle, along the whole extent of a shear/vorticity layer
which starts at the inlet and includes the vortex breakdown location. This shows that
any velocity perturbation that is on the streamline that impinges on the wavemaker
region (discussed next) will have the strongest influence.
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FIGURE 14. (Colour online) (a) Magnitude of the adjoint velocity of the global mode
representing the precessing vortex core (the direct mode shown in figure 13a,c,e).
(b) Structural sensitivity of the same precessing vortex core mode.

For oscillators such as the precessing vortex core, an optimal initial condition
is not enough to alter the system dynamics. The eigenvalue needs to change, so
the receptivity (adjoint mode) needs to overlap with a high amplitude of the direct
mode. We will now overlap the direct and adjoint modes to obtain the structural
sensitivity, given by the 2-norm of the structural sensitivity tensor. The structural
sensitivity of the precessing vortex core is shown in figure 14(b). Knowing that
the adjoint mode is strong upstream of the separation point, and the direct mode
is strong downstream of the separation point, it is not surprising a posteriori that
the wavemaker (structural sensitivity) resides near the separation point, which is
the upstream point of the inner vortex breakdown bubble. Without prior knowledge,
however, one might not have guessed that the structural sensitivity is so localized.
The complicated mean flow with multiple recirculation zones (figure 4) might be
expected to give rise to a range of different instability mechanisms. The sensitivity,
however, points out a very specific region as the origin of the dominant instability:
the vorticity layer and high-swirl region prior to the separation region near the
nozzle exit.

8. Instability mechanism

We will now use the structural sensitivity to investigate which instability mechanisms
are active in the precessing vortex core instability.

The axial location of the maximum structural sensitivity is inside the nozzle, at
z=−0.24. Mean flow velocity profiles in the axial location of the maximum sensitivity
are shown in figure 15(a). Spiral vortex breakdown is an oscillatory motion which
may occur in swirling flows that have a potential core and decaying swirl in the
outer region (Leibovich 1978), as in the mean swirl profile shown here. Spiral vortex
breakdown occurs at swirl values slightly higher than that of the steady axisymmetric
breakdown. Axisymmetric breakdown is the cause of flow separation inside a nozzle
in swirl injectors (Leibovich 1978; Syred 2006). This flow (figure 3) separates in the
nozzle and spiral vortex breakdown is possible.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

, o
n 

27
 Ju

l 2
01

8 
at

 1
4:

18
:0

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

86

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.86


646 O. Tammisola and M. P. Juniper

1.0

0.4

0.6

0.8

10 2 3 10 2

 0.3

0.4

 0.6

0.8

 0.5

0.7

 0.9

(a) (b)

r

FIGURE 15. (Colour online) Profiles in the axial location of the maximum structural
sensitivity inside the nozzle (z = −0.24): (a) mean flow velocity profile, axial (Uz) and
swirl (Uθ ) components. Structural sensitivity magnitude is shown by the greyscale on top.
(b) Profile of the structural sensitivity magnitude in the same axial location.

The swirl number for spiral vortex breakdown is similar in different swirling flows:
S= 0.915 for a vortex breakdown bubble (Ruith et al. 2003; Meliga et al. 2012a) and
S= 0.88 for a swirling jet (Oberleithner et al. 2011). In the position of the wavemaker
in this flow, the swirl number based on the average velocities is Sw=1.13. We suggest
that the precessing vortex core is a spiral vortex breakdown instability, which takes
place inside the nozzle in this injector flow mainly for two reasons: (i) the contraction
leads to an increase of swirl through conservation of angular momentum until the
swirl number reaches a critical value, and (ii) the favourable pressure gradient (which
otherwise may suppress vortex breakdown, Leibovich 1978) is less strong near the
nozzle outlet where the flow starts to expand radially.

The structural sensitivity of the spiral vortex breakdown around an axisymmetric
vortex breakdown bubble was studied by Qadri et al. (2013). The structural sensitivity
magnitude was high at the upstream end of the recirculation zone, with maximum
amplitude at the centreline just upstream of the recirculation bubble. By considering
different components of the structural sensitivity tensor, the instability mechanism
was proposed to be due to the conservation of angular momentum upstream of the
bubble, amplified by Kelvin–Helmholtz instability waves in the shear layer around
the bubble.

In our flow, the structural sensitivity is also high just upstream of the separation
point. However, the peak of the structural sensitivity in the vertical direction (light
colours in figure 15) is in the shear layer. More tellingly, the peak of the structural
sensitivity coincides with the inflection point in the shear layer. The whole profile
of structural sensitivity magnitude as a function of vertical coordinate is shown in
figure 15(b). The structural sensitivity of a parallel wake, shown in Qadri et al. (2013),
has a very similar appearance. This suggests that Kelvin–Helmholtz mechanism may
be more influential for the injector flow than it is for the axisymmetric vortex
breakdown bubble.

In Qadri et al. (2013), the relative importance of angular momentum conservation
and Kelvin–Helmholtz instability was investigated based on the relative magnitudes of
individual components of the structural sensitivity tensor Sij = uiu+j , where the index
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FIGURE 16. (Colour online) Magnitude of components of the structural sensitivity tensor:
(a) uzu+z , (b) uzu+r , (c) uzu+θ , (d) uru+z , (e) uru+r , ( f ) uru+θ , (g) uθu+z , (h) uθu+r , (i) uθu+θ .
The colourscale goes from 0 (dark) to 17.2 (light).

represents the axial, radial or azimuthal velocity component of the eigenmode u or its
adjoint u+. For example, the component Szr represents a physical feedback mechanism
where the radial momentum equation is perturbed by a force proportional to uz
(for example, axial drag). The magnitude ‖Szr‖ represents the maximal eigenvalue
change caused by such a mechanism. The magnitudes of the nine components
of Sij are shown in figure 16(a–i). The Szz component dominates, as was shown
to be the case for the Kelvin–Helmholtz instability of a parallel wake in Qadri
et al. (2013). In contrast to the axisymmetric vortex breakdown, the feedback from
angular momentum is weaker in comparison (components Srθ , Srr, Sθr, Sθθ ). This
further confirms that the frequency of the global mode is selected at the shear layer
inflection point by a pure Kelvin–Helmholtz mechanism. The shear layer inflection
point in turn is caused by the axisymmetric vortex breakdown, and appears upstream
of the breakdown (separation). This also appears to be the frequency selection of
the final oscillation in the system where nonlinearities and turbulence are fully
developed.

9. Effects of excluding the turbulent dissipation on the eigenmodes
In figure 17, the axial velocity of the global mode with eddy viscosity (a) is shown

alongside the leading global mode computed around the mean flow, but with only
molecular viscosity (b). The latter is the quasi-laminar approach used in Mettot et al.
(2014b). In the mode shape with molecular viscosity, we can see the boundary of the
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FIGURE 17. (Colour online) Global mode derived by including eddy viscosity (a,c)
compared to the same global mode derived without eddy viscosity (b,d): (a) m = 1
axial velocity, with eddy viscosity, (b) m = 1, axial velocity, with molecular viscosity,
(c) structural sensitivity, with eddy viscosity, (d) structural sensitivity, with molecular
viscosity.

central recirculation zone, showing that the mode shape and inclination is sensitive
to the local shear. In contrast, the mode shape with eddy viscosity (figure 17a)
contains vertically aligned smooth structures extending inside and outside of the
recirculation zone, exactly like the POD mode. We also see that the wavelength of
the global mode with molecular viscosity shortens downstream, and the mode has still
a visible amplitude at z = 4, while the wavelength of the mode with eddy viscosity
does not shorten and the mode disappears around z = 3, in agreement with the
POD mode.

There is little doubt that eddy viscosity improves the agreement of the global mode
shapes with the POD, and the same seems to apply to the frequencies. The mode with
eddy viscosity has St= 0.74, compared to St= 0.70± 0.06 from DNS, and St= 0.87
for the mode with molecular viscosity. Hence, eddy viscosity also notably improves
the frequency agreement. The only drawback of the eddy viscosity is noted when
looking at the mode growth rates: the stabilizing influence of turbulent dissipation is
overestimated by making all eigenmodes stable. The m=1 mode is slightly stable with
amplification rate σr =−0.17. This highlights the issue known from previous studies
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that it may be difficult to obtain neutral growth rates in a mean flow analysis, and
this might be a problem in cases where the growth rate is used as an indicator to
identify the dominant eigenmodes. It should be mentioned that the mean flow stresses
used to determine the eddy-viscosity distribution include the effects from both the
turbulent fluctuations and the coherent structures. To be fully consistent, the base flow
for a stability computation with eddy viscosity should include the effect of turbulent
dissipation but not dissipation by coherent structures (termed base flow approach in
Mettot et al. (2014b)). A new base flow forced only by the turbulent Reynolds stresses
could be computed, and this would lead to a somewhat smaller eddy viscosity, and
possibly closer to neutral mode growth rates.

Finally, as the eddy viscosity influences the mode shapes, and the mode shapes are
used to construct the structural sensitivity, the eddy viscosity also has some influence
on the structural sensitivity (wavemaker). The wavemakers with and without eddy
viscosity are compared in figure 17(c,d). By comparing the wavemaker with eddy
viscosity (c) and that with molecular viscosity (d), we see that the eddy viscosity has
two effects: it makes the wavemaker more dispersed, and lifts it up slightly from the
wall. Hence, the wavemaker with eddy viscosity has the same amplitude over a region
starting just upstream of the separation point and ending just beyond the injector lip,
while the wavemaker without eddy viscosity is more focused in the immediate vicinity
of the separation point. Although the amplitude of the structural sensitivity is strongly
influenced by the viscosity model used, the location of its maximum (the wavemaker
region) does not change. It is inside the nozzle in the upstream part of the central
recirculation zone.

The structural sensitivity gives the influence of a local perturbation of the system
matrix on the eigenvalue, whether the perturbation comes from a physical or a
numerical origin. Hence, apart from estimating the physical origin of the instability,
the structural sensitivity also has a numerical interpretation. We can observe that
eddy viscosity reduces the maximum amplitude of the structural sensitivity of the
m= 1 mode by an order of magnitude, from approximately 20.5 to approximately 2.5,
showing that the eigenmode with molecular viscosity is more sensitive to perturbations.
From the numerical solution point of view, this means that the modes without eddy
viscosity, and the underlying mean flow, need to be highly resolved near the nozzle,
and in particular in the region near the separation point. This makes sense based
on what is known about high-Reynolds-number flows. However, the modes with
eddy viscosity have a lower effective Reynolds number, and hence a more even and
weaker structural sensitivity. Therefore, the use of eddy viscosity makes the global
mode problem better conditioned numerically.

10. Discussion
10.1. Nonlinear interaction with harmonics and other oscillators

The role of nonlinear interaction with harmonics, and its implications for the mean
flow stability results, have been investigated in the global instability community.
For example, Sipp & Lebedev (2007) considered criteria based on the coefficients
of a weakly nonlinear expansion (the Landau coefficients). These criteria indicated
the relative strength of the mean flow harmonic, and the second harmonic. If the
nonlinearities acted more strongly to modify the mean flow, and less strongly to
amplify the harmonic, then mean flow stability could give meaningful
results. Criteria based on the presence of subharmonics were expressed by
Mezic (2013).
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For the swirl injector flow in the present study, harmonics are observed neither
in the PSD spectra nor in the FFT coefficients of the leading 11 POD modes. We
therefore conclude that any harmonics of the precessing vortex core are unobservable
compared to the mode itself. The mode is likely to interact more with the mean
flow than with its second harmonic. We therefore conclude that the criteria of Sipp
& Lebedev (2007) are highly likely to be satisfied. Furthermore, the strength of the
next highest spectral peak (the double-helical mode, POD mode 3–4) is an order
of magnitude lower than that of the precessing vortex core. Hence, any nonlinear
interactions with other oscillators or coherent structures (such as for the swirling flow
in Meliga et al. (2012a)) are also likely to be weak and can be ignored.

However, neither of the above studies considers the interactions between the
eigenmode and the bulk of the incoherent fluctuations. The random incoherent
fluctuations contain a significant part of the total energy for the swirl injector flow,
and hence the precessing vortex core is highly likely to be influenced by them. This
is the stochastic interaction we aim to model with the eddy viscosity.

10.2. Effect of turbulent dissipation – eddy viscosity versus molecular viscosity
First, we note that different eddy-viscosity models extracted from experimental
data were tried in a local absolute instability analysis of a similar injector flow
(Oberleithner et al. 2015). All eddy-viscosity models resulted in a nearly neutral
growth rate. The differences between different models were less than the qualitative
difference between eddy viscosity and molecular viscosity. However, the Newtonian
eddy model, which is that used in the present study, provided the best match with
the experiments. These findings support the hypothesis that the choice of the model
for turbulent dissipation is less crucial than the choice of including it. A possible
reason for this is discussed below.

The findings of the present study can be related to what is known about global
stability analysis around turbulent mean flows, particularly in bluff-body flows. The
effect of mean flow and dissipation has been discussed extensively in the context
of reduced-order models, which is a closely related topic. The mean-field theory
introduced by Noack et al. (2003) stated that a stability analysis around a mean
flow will produce the limit cycle as a neutrally stable global mode, which was
later confirmed by Barkley (2006). Both authors investigated the saturation to a
limit cycle oscillation of a cylinder wake at a supercritical but laminar Reynolds
number. Subsequent studies have addressed the effect of small scales in a high-lift
configuration (Luchtenburg et al. 2009) and turbulent fluctuations in a complex
bluff-body wake (Östh et al. 2014; Protas et al. 2015). These studies concluded
that unresolved incoherent fluctuations dissipate energy from larger scales, and this
dissipation must be included in the reduced-order model in order not to overestimate
the growth rates of the large scales, and even for the Galerkin approximation to
converge to a finite value.

The reduced-order POD models are used to reconstruct the time evolution of
the system. The above findings suggest that a time evolution around a turbulent
mean can only be reproduced by including an effect of dissipation on the modes
themselves. This is in line with the results of the present study. The global modes
with extracted eddy viscosity gave a better agreement with DNS than the global
modes with molecular viscosity. The eddy viscosity also brought the growth rate
closer to neutral. Neutral growth rates would be expected according to the mean-field
theory (Noack et al. 2003). The mode shapes provide further evidence of the role
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of dissipation. The global modes with molecular viscosity are more localized in the
shear layers, while the modes with eddy viscosity are more spread out in the vertical
direction (in a better agreement with DNS). This can be compared to the instability
in parallel flows such as channel flows and shear layers: the instability modes at
higher Reynolds numbers have narrower and more localized shapes than those at
lower Reynolds numbers. To support this hypothesis, we show instability modes at
different instability and base flow Reynolds numbers in appendix B.

10.3. Structural sensitivity in turbulent external flows
The main aim of this study was to locate the structural sensitivity of the precessing
vortex core. Structural sensitivity has been computed in a few earlier studies in
external, non-swirling turbulent flows. Very recently, it was shown (Mettot et al.
2014b) that for the flow around a D-shaped cylinder, the most sensitive region
remains effectively the same, and agrees with experimental results, irrespective of
whether or not an eddy-viscosity model is applied in the stability analysis around
a mean flow. Furthermore, the frequency is relatively well captured whether or not
eddy viscosity is used – the Strouhal number was St = 0.26 in the stability analysis
without eddy viscosity, and St= 0.23 in a nonlinear simulation, giving a discrepancy
of 15 %. Similar agreement with experimental sensitivity regions has been obtained
for other cylinder wakes, e.g. in Camarri et al. (2013).

On the other hand, in the present study of a swirling flow in a complex geometry,
the precessing vortex core (m= 1) mode seems to be affected by turbulent dissipation.
When the effect of turbulent dissipation on the eigenmodes is taken into account in
the form of the extracted eddy viscosity, the frequency comes out as St= 0.74, with
6 % accuracy. If the effect of extra dissipation is not taken into account (molecular
viscosity), the frequency comes out as St= 0.87, compared to St= 0.7 in DNS, giving
a discrepancy of 25 %. Furthermore, the eddy-viscosity approach distinguishes the
m = 1 mode from the rest of the spectrum, in agreement with DNS, while with
molecular viscosity, the m = 2 mode is predicted to have a similar growth to the
m= 1 mode, in contrast with DNS.

Hence, one might ask why the frequency selection for the cylinder flow is
somewhat more robust. We believe that the main reason is that the injector mean flow
varies rapidly in the region around the structural sensitivity. The difference between
figure 17(c) with eddy viscosity and (d) with molecular viscosity is small, so the
streamwise location of the structural sensitivity is quite robust. However, the swirl
varies rapidly in space. Hence, small changes in the location of the wavemaker will
result in non-negligible changes of the swirl velocity in the wavemaker location.

We also hypothesize that eddy viscosity is less important for the cylinder flows
because the laminar and turbulent regions are separated in space. The structural
sensitivity is contained in a relatively laminar region, and therefore is relatively
unaffected by dissipation. From the figures in Mettot et al. (2014b), the main part
of the wavemaker is located close to the wall at the top and the bottom of the
cylinder. The Reynolds stresses shown in Parezanovic & Cadot (2012) on the other
hand have their maximum in the wake region downstream of the cylinder, where the
von Kármán vortices are fully developed. For the fuel-injector flow, the wavemaker
without eddy viscosity is localized at the upstream part of the central recirculation
zone, around the same region at which the global mode and the Reynolds stresses (not
shown) both have their maxima. From figure 5(a,b) and from the probe signals, we
see that turbulent small-scale motions are present in this location, moving back and
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forth together with the organized wave (cf. (3.6)). Hence, the effect of a (structural)
perturbation may not travel straight from point A to point B along the mean flow
streamlines, as a fully laminar analysis assumes, but be dissipated around a larger
region by the turbulent motions, spreading out the structural sensitivity.

10.4. Relation to local stability analyses in swirling jets and injector flows
These results can also be related to previous results obtained by local stability analysis.
Similar injector flows (Juniper 2012; Oberleithner et al. 2015) have been studied by
local stability analysis in the combustion chamber region, excluding the nozzle region.
For the precessing vortex core, a region of absolute instability was identified very
close to the chamber inlet. In the present study, we find that the wavemaker of the
precessing vortex core has its maximum inside the nozzle.

It has been observed in laminar flows (Tammisola 2012; Qadri et al. 2013) that the
maximum magnitude of structural sensitivity coincides with the wavemaker location
in local stability analysis. A formal link between the two concepts was established in
Juniper & Pier (2014). Here, we have shown that the global mode wavemaker of the
Turbomeca flow lies inside the nozzle.

The frequency selection in local stability analyses of injector flows seems somewhat
more robust than in global stability analyses, in that local analysis around the mean
flow with molecular viscosity gives quite accurate predictions of the frequency
(Juniper 2012; Oberleithner et al. 2015). This could be due to the nature of
local analysis, which resolves the absolute frequency in each streamwise point
independently, based on the instability of the local profile, and without taking into
account other streamwise locations. In global analysis, the whole domain is coupled
for each eigenmode, and hence the global dissipation information (or the stochasticity
introduced by turbulent motions) might become more important.

11. Conclusions

The dynamics of a swirling flow in a realistic fuel-injector geometry has been
studied at relatively high Reynolds number: Re = 4800 based on the mean velocity
and the diameter at entry to the combustion chamber. To the authors’ knowledge, this
is the first global stability and sensitivity analysis for either a turbulent flow in an
internal complex geometry or a turbulent swirling flow.

POD modes extracted from the DNS snapshots were compared with linear global
modes computed around the mean flow, modelling turbulent dissipation by a frozen
eddy viscosity model extracted from the nonlinear data. The global modes accurately
reproduce the shape and frequency of the dominant coherent structure (the leading
POD mode pair), which is the precessing vortex core. The structural sensitivity
(wavemaker) of the mode resides in the upstream part of the central recirculation
zone in and around the nozzle, showing that, despite the complicated mean flow
structure, only this region is dynamically important for the self-sustained oscillation.
This result is similar to that of Qadri et al. (2013) for a laminar vortex breakdown
bubble.

The wavemaker can be relatively well captured with molecular viscosity only, in
agreement with previous studies. However, eddy viscosity significantly improves the
agreement of the direct mode shapes with POD, and hence the wavemaker with eddy
viscosity is likely to be more accurate. In addition, the structural sensitivity becomes
more spread out when eddy viscosity is used, indicating that the modes are less
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Code DoF m St σr

FreeFem++ 5.5× 105 1 0.8926 0.6402
FreeFem++ 8.5× 105 1 0.8953 0.6017
FreeFem++ 1.23× 106 1 0.8973 0.5995
Nek5000 8.8× 106 1 0.8973 0.6143
FreeFem++ 5.5× 105 2 1.6288 0.9080
FreeFem++ 1.23× 106 2 1.6379 0.9120
Nek5000 8.8× 106 2 1.6323 0.9416

TABLE 1. Influence of the grid resolution on the growth rate of the leading linear global
mode eigenvalues around the DNS mean flow, molecular viscosity.

sensitive to numerical resolution, which will be advantageous when moving to higher
Reynolds numbers.

Future studies can include refined, dynamic, eddy-viscosity models which should
be linearized around a fixed point of the equations including a turbulence model. The
model should be selected carefully in order not to lose the correct scales of the mean
flow swirl profile.

This study as a whole shows that sensitivity analysis can be applied to industrially
relevant problems in which the flow is turbulent and the geometry is relatively
complex. These results show designers which part of the flow has most influence
on the spiralling mode often seen in fuel injectors. With further developments, this
will show how the geometry should be changed in order to enhance or remove this
motion.
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Appendix A. Global mode results with molecular viscosity using Nek5000
In this appendix, we show the linear global modes computed around the mean flow

in Nek5000, when using a molecular viscosity in the global mode computation. These
modes are computed in a 3D Cartesian framework, with the linearized Nek5000 time-
stepper as the only tool (already validated in several previous studies). This serves as a
basic validation of the FreeFem++ axisymmetric code, and also a direct validation of
the results computed with molecular viscosity. Results from TriGlobal linear global
mode analysis in Nek5000 with molecular viscosity are summarized in figures 18
(spectrum) and 19 (direct and adjoint eigenmodes), and can be compared to the ones
obtained in FreeFem++ in the bulk of the manuscript. Grid convergence data is given
in table 1.

Appendix B. Effect of stability problem Reynolds number
Here, a small test is shown in which the Reynolds number is artificially changed

to another value in the stability problem for (1) a high-Reynolds-number mean flow
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FIGURE 18. (Colour online) Nek5000 leading eigenvalues, computed with a TriGlobal
ansatz, resulting in a combination of all azimuthal wavenumbers. The m = 2 eigenvalue
(σ = 10.25 + 0.94i → St = 1.6) is shown by a blue star, and the m = 1 eigenvalue
(σ = 5.64 + 0.61i → St = 0.90) by a red star. Only the leading five eigenvalues shown
are converged.
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FIGURE 19. (Colour online) The two most unstable eigenmodes (red and blue in
figure 18) derived with molecular viscosity using Nek5000: (a) m= 1, direct mode, axial
velocity, (b) m= 2 mode, direct mode, axial velocity.

(figure 20a,c), and (2) a low-Reynolds-number base flow – equilibrium solution to
Navier–Stokes (figure 20b,d). In both cases, when the Reynolds number in the stability
problem is high, the structures are finer and localized in the shear layer, and when the
Reynolds number in the stability problem is low, they are broader. This can be seen
by comparing the mode in figure 20(a,b) to the mode in figure 20(c,d). This simple
example illustrates how changing the effective Reynolds number changes the mode
shapes, and that this feature is common for base flows and mean flows.
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FIGURE 20. (Colour online) Global modes calculated at different Reynolds numbers for
the stability analysis, Rest, and for the mean flow, Rem, or base flow, Reb. (a) Rem= 1250,
Rest=1250. (b) Reb=100, Rest=1500. (c) Rem=1250, Rest=50. (d) Reb=100, Rest=100.
(a) σ = 0.79+ 5.85i. (b) σ = 0.34+ 0.71i. (c) σ = 0.03+ 5.18i. (d) σ = 0.28+ 0.51i.
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