N\
) ICSV19
\— g T

MATRIX-FREE CONTINUATION OF LARGE
THERMOACOUSTIC SYSTEMS

lain Waugh, Simon lllingworth and Matthew Juniper

Cambridge University Engineering Department, Cambridge, CB2 1PZ, United Kingdom,
e-mail: icw26@cam.ac.uk

To define the safe operating region of a thermoacousticrystés critical to find the regions
of parameter space where limit cycles exist. Continuati@thads allow limit cycles to be
numerically found in the time domain, and can track the cleang the limit cycles as the
operating condition of the thermoacoustic system changes.

Most continuation methods for finding limit cycles are imgireal for large thermoacoustic
systems, because the computational time and memory redoiferm the Jacobian matrices
is too large. There are thus only a few applications in thezdiiure of continuation methods
for thermoacoustic systems, all with low-order models.

Matrix-free shooting methods are effective for calculgtthe limit cycles of dissipative sys-
tems and have been demonstrated recently in fluid dynamitsré yet unused in thermoa-
coustics. The matrix-free methods converge quickly totlicgcles by implicitly using a ‘re-
duced order model’ property; the iterative methods prefiay use the important bulk mo-
tions of the system, whilst ignoring features that are gyidissipated in time. The matrix-free
methods are demonstrated on a model of a ducted 2D diffusiorefland the stability limits
are calculated across a parameter range. Both subcritidadw@percritical Hopf bifurcations
are found. Physical information about the flame-acousteraction is found from the mode
shape of limit cycles.

1. Introduction

Thermoacoustic oscillations can occur whenever comhbugt&es place inside an acoustic
resonator. Unsteady combustion is an efficient acousticcep@and combustors tend to be highly
resonant systems. Therefore for suitable phase diffesebeveen combustion and acoustic per-
turbations, large-amplitude self-excited limit cyclesigaccur. Because limit cycles are generally
unwanted in a combustion system, we are interested in firtlimgafe operating region of parameter
space, where no limit cycles (or other high-amplitude stateh as chaos) exist.

Nonlinear analyses are required in order to calculate loyate amplitudes and mode shapes,
and to quantify the extent of any bistable operating regiémshermoacoustics, it is common to see
a branch of limit cycles emerging from a Hopf bifurcation. Apf bifurcation is where a complex
pair of eigenvalues of the Jacobian matrix (for the fixed pdiave zero real part. Hopf bifurcations
in thermoacoustics are either supercritical or subclit@s shown schematically in Figure 1(a) and
(b). Both types of bifurcation have been seen in experinieotabustors [1]. When subcritical Hopf
bifurcations are present in a system, triggering can oaoum & linearly stable fixed point to a large
amplitude limit cycle. The triggering can be instigated byudse [2] or the action of background or
combustion noise [3].
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Figure 1: Schematic supercritical (a) and subcritical (bpHbifurcations, in terms of the limit cycle
amplitude,a, and a system parameté&r. The critical parametel?’,, is the parameter value where
limit cycles first occur. The linear stability limif;}, is the same as the Hopf bifurcation point. In the
subcritical Hopf bifurcation, there is a bistable regionesdnthere is both a stable fixed point and a
stable limit cycle P. < P < PB)). Triggering can occur in the bistable region.

In the time domain, continuation analysis has been devdlopine field of nonlinear dynamics
to track solutions whilst varying system parameters. THetms can be fixed points, limit cycles,
or bifurcations. A summary of relevant bifurcations in flaignamics is given in Cliffe [4]. Software
packages are available for continuation of systems ith0) variables, and have been applied to
simple thermoacoustic systems [8, 9, 10]. The methodsegbplithese papers, however, are imprac-
tical for larger systems because they use direct solvethéannderlying linear algebra. Continuation
analysis relies on the solution of a series of linear equatio find solutions, and the exact solu-
tion of these linear equations becomes prohibitively espenfor larger systems, both in terms of
computational time and memory usage.

Matrix-free iterative methods can reduce both the comprtat time and memory usage dur-
ing the solution of the linear equations. Matrix-free methdave recently been used to find cusp
bifurcations [5] and limit cycles in thermal convection [8lith O(10%) variables. Limit cycles have
also been extracted from turbulent Couette flow [7] vétfi0°) variables, using matrix-free methods
and hook-step optimisation routines.

The dissipative nature of fluid systems means that mate&-fnethods are particularly well
suited to finding limit cycles. Because combustion and flgidgems are dissipative, only a few bulk
fluid motions are important in the long time limit, and thenef there are far fewer important degrees
of freedom than there are variables. The iterative methioesaictly solve the linear equations by
implicitly using these important bulk motions, whilst igimay features that are quickly dissipated in
time.

The aim of this paper is to present a method for finding limitleg in large thermoacoustic
models, using an iterative matrix-free continuation teghae (further details in [16]). The technique
is able to calculate the safe operating region of the thecowstic system in the time domain, and
find the mode shape and frequencies of any limit cycles. Therdaegins by introducing the shooting
methods and the iterative techniques used to converge taritheycles. The paper then describes
how the iterative process can be achieved with matrix-feedriiques. The numerical methods are
then demonstrated on a model of a 2D diffusion flame in an dicodisct in section 4.

2. Shooting to find limit cycles

Continuation analysis examines nonlinear systems witlugoo:

dz(t) N
20  Pa(e), ), 2t <R &
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Figure 2: Shooting method to find a limit cycle. Given a cutrgmess for a point on a limit cycle,
z(0), we timemarch forward” time units toz(7"), whereT" is our guess for the period. We then
iterate our starting guess(0), to minimise the length of the residual vecto(p) — z(7), (dashed
arrow).

wherez is the current state of the system andre parameters. The governing equations are in most
cases derived from the discretisation of a PDE.
When solving for limit cycles the condition is:

2(0) = a(T), {T € RT|T #0}, (2)

whereT is the period of the orbit.

The shooting method used in this paper finds, by iteratiotate &n the limit cyclez(0), and
the period of the limit cycle]". The magnitude of the residual vector= x(0)—z(7) (Fig. 2), is
reduced to a predefined tolerance by a two-step iteratiotegeo First, we consider the evolution of
the system when started from small perturbations aroundwuent guessz(0), 7']. We generate a
(N +1) x (N + 1) Jacobian matrix, which relates a general small chan@e(i), 7] to the resulting
change inz(0) — z(7"), T|. Second, we solve a linear equation with the Jacobian miatfixd the
[Az, AT] that we should add to our current guegsg0), 7], in order to improve the guess. If the
magnitude of the residual is still too large, we repeat trst sitep from the improved guess.

The linear equation is shown in Equation (3) for ttieiteration, where and; are the row and
column indices of the matrix [11]. It has the standard formrfalti-dimensional Newton iteration,
JAx = —r.

(N+1)x (N+1) (N+1)x 1 (N+1)x 1

AT o
NX4N. . aﬁl(T) lCXN B 06 1Cxll B %
%, - oT =] T aﬁj(O)’ - T

(0" =gz(0)" + Az, T =T"+AT

There is an infinite number of points on the limit cycle thaisg » = 0, however, so a phase
condition(#) is required to provide a unique solution state by fixing thagehof the limit cycle. For
a limit cycle in a thermoacoustic system, a suitable phaseliton can be that the instantaneous
acoustic pressure in the fundamental mode is zero, or thahftantaneous acoustic pressure at a set
locationz/ L of the combustor is zero. Where multiple acoustic modesmapsitant, the value /L
should be irrational.

The j** column of the Jacobian matrix can be found by perturbin@), then timemarching
forward and seeing the resultant change(#'). To fill the Jacobian matrix for each linear equation,
N time-marches are required. For large thermoacousticegsteith O (10%) variables, it is imprac-
tical to form the Jacobian matrices, because the compuotdtéxpense of timemarching is too high.
This is the primary driver for the use of matrix-free methods
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3. Matrix-free methods

As stated in the previous section, when finding limit cyclgsbooting methods the formation
of the Jacobian matrix requiréé timemarches, which is unfeasible for large thermoacosgstems.
Matrix-free methods are those that solve the linear equnatid: = —r, without ever requiring the
matrix J to be explicitly defined. The methods are iterative and oafyuire matrix-vector products,
i.e. Ju, wherew is an arbitrary vector. This differs from many conventiomadthods of solving linear
equations, where the matrikis defined and then decomposed.

3.1 GMRES

The matrix-free method used in this paper for solvinyx = —r is the Generalised Minimal
Residual method (GMRES) [12]. GMRES ugesnatrix-vector products to definekadimensional
Krylov subspace:

KCi, = span {[0, Jry, J2£0, J3f0> o Jk_lfo} ,

wherer, = —r — Jz,,, andz, is an initial solution guess, often taken as the right hadd,sir.
The vectors, Jr,, J*r,... become almost linearly dependent, so the standard Arndathoal
is used to find orthonormal vectorg,, s that span the Krylov subspaég,. Modified Gram-
Schmidt methods with re-orthogonalisation are generagduo orthonormalise the vectors for large
systems, because the standard Gram-Schmidt processdtdfarnumerical problems with largg.
In each Krylov subspace, the current guess for the solufiaf, is changed to minimise the residual:

resy = ||—1r — JAz,|

If convergence occurs, wheres, < c.n., the iterative procedure stops. s, > c.onus
another matrix-vector product is taken to foldp, ;. Another Arnoldi step is taken, to add another
orthogonal direction, . The residual is then minimised in this extra direction. Vhetorsy

PR q
= =1 2k
are unchanged it 1, so the convergence of the GMRES method is monotonic.

3.2 Finite difference matrix-vector products

Matrix-free methods solve the equatigd\x = —r using only matrix-vector products. In the
case of the Jacobian matrix the matrix-vector product caappeoximated by finite differences, be-
cause the Jacobian matrix is formed of partial derivatiVé® mapping operatod, which represents
the time marching process, is defined as:

2(T) = A(z(0))
Therefore because the spatial part of the Jacobian maulefised in equation (3) as shown in
equation (4),
9 (2,(0) — 2,(T))
9z;(0)

then the matrix-vector product for arbitrary vectatan then be approximated by equation (5), where
0 is small.

Jij = (4)

A(z(0) + ov) — A(z(0
Ju=p - ARO T = AGO) | 6 -
To evaluate each matrix-vector product during the GMRESItswl therefore requires one
timemarch. The phas@)(components of the Jacobian matrix are also partial difiteads, and can
similarly be used in the finite difference approach. Finiteedence matrix-vector products are simple
to evaluate, but care must be taken to ensure that there geiaescaling between variables in the

state vector or numerical problems may arise.
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(a) The flame and duct geometry (b) 2D steady stat& field.

Figure 3: A 2D mixture fraction field4) is used to describe the diffusion flame. The flame lies on
theZ = Z,, contour, which is shown as a black line in (a) and (b). The hedatise from the diffusion
flame domain acts at locatiary in a 1D open ended duct.

4. Ducted 2D diffusion flame model

The continuation routines are applied to a model of a theomastic system containing a ducted
2D diffusion flame, first used by [13, 14] and later adaptedllnygworth to improve the accuracy
by using a spectral discretisation [17]. The model contai2® flame domain, where the mixture
fraction, Z, is discretised on a Chebyshev grid, with an axis of symmatrpg the centreline. The
mixture fraction obeys the non-dimensional diffusion addextion governing equation, and is spec-
ified to beZ = 1 in the fuel pipe ( < |y| < o) andZ = 0 in the oxidiser piped¢ < |y| < 1), with
boundary conditiong?/ay| , | = 0, 9Z/os[, _, . = 0. The flame lies on the contour = Z;, and
is assumed to have an infinite reaction rate. The locatioheoflame is denoted™.

The heat release from the model is coupled to a simple linarstic model of a duct [14, 9],
whereu andp are the nondimensional velocity and pressure pertubatiotie duct. For the per-
turbation statez = [u, p, z], the non-dimensional governing equations are shown beiltere the
subscriptf denotes that the value is taken at the flame position, a bensred a mean quantity. The
system has non-dimensional parameters: Peclet nuffyehe acoustic damping the stoichiomet-
ric mixture fractionZ,;, the flame position in the duat;, the fuel pipe widthn, and the coupling
parametepr, defined bydr = 2/(Tinser — Tudiabaric).

Ou _ _Op
o ox
v
o~ ox U )
26T f+8z A =
+1_Zst5(x—xf)<—/ i adyderuf/O (Z = Zg) dy
ot Tox " Pe \ 022 0y? re upr

A more complete description of the model is included in [1The results in this paper are
generated with a0 x 16 symmetric flame grid an20 acoustic modes, giving a total system dimension
of 475 (the boundary values of the Chebyshev grid are defined bydhedary conditions so are not
included in this number). The model is timemarched in FORNRAINg the standard Runge-Kutta
4 technique with a timestep db—3. The results of the model have been compared against those
generated with a finer Chebyshev grid and a finer timestep,anly a 1% difference in heat release
fluctuation observed.
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Figure 4: Continuation results for limit cycle amplitud@se thick dark line is the Hopf bifurcation,
which is the same as the linear stability limit. The linearhstable region is shaded dark gray and
the bistable region is shaded light gray (the bistable regidhe vertical shadow of the subcritical
bifurcation). Limit cycles are shown as dark dots on a serfeterpolated between neighbouring
slices. The surface exhibits both subcritical bifurcasiga) and supercritical bifurcations (c), where
stable limit cycles are shown with a solid line and unstainhét Icycles with a dashed line.

5. Numerical results

The next subsections show some of the physical resultsaéaifrom the continuation method
applied to the ducted diffusion flame model. Further physgamination of the results is found in
[17], and further examination of the numerics is found in][16

5.1 Limit cycle surface

Figure 4 shows the limit cycle amplitudes as two parameteryaried: Peclet number, which
changes the ratio of advection to diffusion in the flame, apd which controls the extent to which
unsteady combustion perturbs the acoustics (Eq. (7a)) p@teneters that are held fixed &fg =
0.8, ¢ = 0.0247, ¢ = 0.018, @ = 0.35, zy = 0.25, ML/uw = 1. The damping coefficients are
typical for a laboratory scale combustor, afig = 0.8 corresponds to a diluted methane fuel and
pure oxygen [15, p.94]. Each limit cycle is calculated to krtance of||z(0) — z(T)|| < 1078
. The Hopf bifurcation marks the boundary between lineatdple and linearly unstable operating
conditions. The limit cycles form a surface which has bothcsitical bifurcations fob0 < Pe < 70
(Fig. 4a) and supercritical bifurcations fé% < 50, Pe > 70 (Fig. 4c). Where there is a subcritical
bifurcation, there is a stable limit cycle at higher velg@tplitudes. However, this stable limit cycle
has velocity amplitude greater than 2 and is not shown in uedi The bistable operating conditions
are those at which the system has both a stable fixed point stadble limit cycle.

The limit cycles describe the behaviour of the fully couplstem, and are calculated by
continuation analysis quite cheaply: the Hopf bifurcatiioe takes roughly 500s and the surface of
limit cycles takes 61 CPU hours. The surface is composed afié€s and roughly 2500 converged
limit cycles, requiring an average of 52 minutes per slice] 80 seconds per limit cycle. A lower
resolution surface can be calculated in less than 10 CPUshwuith 15 slices and coarser spacing
between limit cycles. The computation can be easily pdiatié because the surface is composed of
separate two-dimensional slices.




19" International Congress on Sound and Vibration, Vilniushuania, July 8-12, 2012

(a) oT/8 (e) 4T/8

(b) 1T/8 (f)5T/8

© 218 (9) 6T/8

0 1 2 3 4
(d) 3T/8 (h) 7T/8
-0.5 0 0.5
g _u,p,z::
OO 1 2 3 4 0 02 04 06 08 10
(i) Steady Z field Steady Z

Figure 5: Snapshots of an unstable limit cycle at Pe=60, watlocity amplitude0.62. In each
snapshot (a-h), the top two bars show the perturbation ressnd velocities in the 1D duct,(=

0 — 1), the lower bar shows the 2D perturbatiofield and current flame location (black line) in the
first part of the flame fieldi(. = 0 — 4). The flame location is marked by the black boxat= 0.25.
The z values are scaled by a factor Gf to share the colourbar with the acoustic perturbations. The
steadyZ field is shown in (i) for comparison.

5.2 Limit Cycles

The continuation analysis efficiently finds limit cycles, ialn can then be used to understand
the underlying coupled flame-acoustic interaction. Figushiows snapshots of the system during an
unstable limit cycle, with Pe=60 and velocity amplitude2).8Vhen the velocity perturbation at the
flame is positive, 5(a)-(c), the flame becomes longer and, theanlet, the regions of high and low
z are stretched. When the velocity perturbation at the flanoerbes negative, 5(d)-(f), the flame
becomes shorter and, near the inlet, new regions of highamd lare formed. In turn, these new
regions are then stretched and convected down the flamehiBdinit cycle, the length of the flame
only varies byAx. =~ 0.4 during the cycle, but slight wrinkling of the flame surfacer ¢z seen as
the regions of high and low are convected down the flame. The limit cycle has an almositrsnic
form during the first and second halves of the limit cycle,abhilemonstrates that the nonlinearity in
this flame model is weak.
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6. Conclusions

Matrix-free continuation analysis can calculate limit i@gefficiently for thermoacoustic sys-
tems with coupled flame-acoustic interaction. Continuatinoalysis can track the limit cycles and
bifurcations of the system as parameters vary, in order tbthia stability limits of the system over a
wide parameter range.

The dissipative nature of thermoacoustic and fluids systeakes them particularly suitable for
matrix-free continuation with GMRES, because the numbempbrtant bulk motions of the system
is in general much less than the total system dimension.

The continuation algorithms are used to generate a surfdoaibcycles for the ducted diffu-
sion flame, with only modest computational time. Both sulmai and supercritical Hopf bifurcations
are found. The mode shapes of the limit cycles are giventtiirbg the continuation algorithm. The
mode shapes give physical insight into the nature of theledufame-acoustic interaction.
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