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To define the safe operating region of a thermoacoustic system, it is critical to find the regions
of parameter space where limit cycles exist. Continuation methods allow limit cycles to be
numerically found in the time domain, and can track the changes in the limit cycles as the
operating condition of the thermoacoustic system changes.
Most continuation methods for finding limit cycles are impractical for large thermoacoustic
systems, because the computational time and memory required to form the Jacobian matrices
is too large. There are thus only a few applications in the literature of continuation methods
for thermoacoustic systems, all with low-order models.
Matrix-free shooting methods are effective for calculating the limit cycles of dissipative sys-
tems and have been demonstrated recently in fluid dynamics, but are yet unused in thermoa-
coustics. The matrix-free methods converge quickly to limit cycles by implicitly using a ‘re-
duced order model’ property; the iterative methods preferentially use the important bulk mo-
tions of the system, whilst ignoring features that are quickly dissipated in time. The matrix-free
methods are demonstrated on a model of a ducted 2D diffusion flame, and the stability limits
are calculated across a parameter range. Both subcritical and supercritical Hopf bifurcations
are found. Physical information about the flame-acoustic interaction is found from the mode
shape of limit cycles.

1. Introduction

Thermoacoustic oscillations can occur whenever combustion takes place inside an acoustic
resonator. Unsteady combustion is an efficient acoustic source, and combustors tend to be highly
resonant systems. Therefore for suitable phase differences between combustion and acoustic per-
turbations, large-amplitude self-excited limit cycles can occur. Because limit cycles are generally
unwanted in a combustion system, we are interested in findingthe safe operating region of parameter
space, where no limit cycles (or other high-amplitude states such as chaos) exist.

Nonlinear analyses are required in order to calculate limitcycle amplitudes and mode shapes,
and to quantify the extent of any bistable operating regions. In thermoacoustics, it is common to see
a branch of limit cycles emerging from a Hopf bifurcation. A Hopf bifurcation is where a complex
pair of eigenvalues of the Jacobian matrix (for the fixed point) have zero real part. Hopf bifurcations
in thermoacoustics are either supercritical or subcritical, as shown schematically in Figure 1(a) and
(b). Both types of bifurcation have been seen in experimental combustors [1]. When subcritical Hopf
bifurcations are present in a system, triggering can occur from a linearly stable fixed point to a large
amplitude limit cycle. The triggering can be instigated by apulse [2] or the action of background or
combustion noise [3].
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Figure 1: Schematic supercritical (a) and subcritical (b) Hopf bifurcations, in terms of the limit cycle
amplitude,as and a system parameterP . The critical parameter,Pc, is the parameter value where
limit cycles first occur. The linear stability limit,Pl, is the same as the Hopf bifurcation point. In the
subcritical Hopf bifurcation, there is a bistable region where there is both a stable fixed point and a
stable limit cycle (Pc < P < Pl). Triggering can occur in the bistable region.

In the time domain, continuation analysis has been developed in the field of nonlinear dynamics
to track solutions whilst varying system parameters. The solutions can be fixed points, limit cycles,
or bifurcations. A summary of relevant bifurcations in fluiddynamics is given in Cliffe [4]. Software
packages are available for continuation of systems withO(10) variables, and have been applied to
simple thermoacoustic systems [8, 9, 10]. The methods applied in these papers, however, are imprac-
tical for larger systems because they use direct solvers forthe underlying linear algebra. Continuation
analysis relies on the solution of a series of linear equations to find solutions, and the exact solu-
tion of these linear equations becomes prohibitively expensive for larger systems, both in terms of
computational time and memory usage.

Matrix-free iterative methods can reduce both the computational time and memory usage dur-
ing the solution of the linear equations. Matrix-free methods have recently been used to find cusp
bifurcations [5] and limit cycles in thermal convection [6], with O(103) variables. Limit cycles have
also been extracted from turbulent Couette flow [7] withO(105) variables, using matrix-free methods
and hook-step optimisation routines.

The dissipative nature of fluid systems means that matrix-free methods are particularly well
suited to finding limit cycles. Because combustion and fluidssystems are dissipative, only a few bulk
fluid motions are important in the long time limit, and therefore there are far fewer important degrees
of freedom than there are variables. The iterative methods inexactly solve the linear equations by
implicitly using these important bulk motions, whilst ignoring features that are quickly dissipated in
time.

The aim of this paper is to present a method for finding limit cycles in large thermoacoustic
models, using an iterative matrix-free continuation technique (further details in [16]). The technique
is able to calculate the safe operating region of the thermoacoustic system in the time domain, and
find the mode shape and frequencies of any limit cycles. The paper begins by introducing the shooting
methods and the iterative techniques used to converge to thelimit cycles. The paper then describes
how the iterative process can be achieved with matrix-free techniques. The numerical methods are
then demonstrated on a model of a 2D diffusion flame in an acoustic duct in section 4.

2. Shooting to find limit cycles

Continuation analysis examines nonlinear systems with evolution:

dx(t)

dt
= F (x(t), λ), x(t) ∈ R

N (1)
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Figure 2: Shooting method to find a limit cycle. Given a current guess for a point on a limit cycle,
x(0), we timemarch forwardT time units tox(T ), whereT is our guess for the period. We then
iterate our starting guess,x(0), to minimise the length of the residual vector,x(0) − x(T ), (dashed
arrow).

wherex is the current state of the system andλ are parameters. The governing equations are in most
cases derived from the discretisation of a PDE.

When solving for limit cycles the condition is:

x(0) = x(T ) ,
{

T ∈ R
+|T 6= 0

}

, (2)

whereT is the period of the orbit.
The shooting method used in this paper finds, by iteration, a state on the limit cycle,x(0), and

the period of the limit cycle,T . The magnitude of the residual vector,r = x(0)−x(T ) (Fig. 2), is
reduced to a predefined tolerance by a two-step iteration process. First, we consider the evolution of
the system when started from small perturbations around ourcurrent guess[x(0), T ]. We generate a
(N +1)× (N +1) Jacobian matrix, which relates a general small change in[x(0), T ] to the resulting
change in[x(0) − x(T ), T ]. Second, we solve a linear equation with the Jacobian matrixto find the
[∆x,∆T ] that we should add to our current guess,[x(0), T ], in order to improve the guess. If the
magnitude of the residual is still too large, we repeat the first step from the improved guess.

The linear equation is shown in Equation (3) for thenth iteration, wherei andj are the row and
column indices of the matrix [11]. It has the standard form for multi-dimensional Newton iteration,
J∆x = −r.

(N+1)×(N+1)
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N×N

Mi,j =
∂xi(T )

∂xj(0)
,

N×1

bi =
∂xi(T )

∂T
,

1×N
cj =

∂θ

∂xj(0)
,

1×1

d =
∂θ

∂T

x(0)n+1 = x(0)n +∆x, T n+1 = T n +∆T

There is an infinite number of points on the limit cycle that satisfy r = 0, however, so a phase
condition(θ) is required to provide a unique solution state by fixing the phase of the limit cycle. For
a limit cycle in a thermoacoustic system, a suitable phase condition can be that the instantaneous
acoustic pressure in the fundamental mode is zero, or that the instantaneous acoustic pressure at a set
locationx/L of the combustor is zero. Where multiple acoustic modes are important, the valuex/L
should be irrational.

The jth column of the Jacobian matrix can be found by perturbingxj(0), then timemarching
forward and seeing the resultant change inx(T ). To fill the Jacobian matrix for each linear equation,
N time-marches are required. For large thermoacoustic systems, withO(103) variables, it is imprac-
tical to form the Jacobian matrices, because the computational expense of timemarching is too high.
This is the primary driver for the use of matrix-free methods.
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3. Matrix-free methods

As stated in the previous section, when finding limit cycles by shooting methods the formation
of the Jacobian matrix requiresN timemarches, which is unfeasible for large thermoacousticsystems.
Matrix-free methods are those that solve the linear equation J∆x = −r, without ever requiring the
matrixJ to be explicitly defined. The methods are iterative and only require matrix-vector products,
i.e. Jv, wherev is an arbitrary vector. This differs from many conventionalmethods of solving linear
equations, where the matrixJ is defined and then decomposed.

3.1 GMRES

The matrix-free method used in this paper for solvingJ∆x = −r is the Generalised Minimal
Residual method (GMRES) [12]. GMRES usesk matrix-vector products to define ak-dimensional
Krylov subspace:

Kk = span
{

r0, Jr0, J
2r0, J

3r0, ..., J
k−1r0

}

,

wherer0 ≡ −r−Jx0, andx0 is an initial solution guess, often taken as the right hand side,−r.
The vectorsr0, Jr0, J

2r0... become almost linearly dependent, so the standard Arnoldi method
is used to find orthonormal vectors,q

1
, .., q

k
, that span the Krylov subspaceKk. Modified Gram-

Schmidt methods with re-orthogonalisation are generally used to orthonormalise the vectors for large
systems, because the standard Gram-Schmidt process suffers from numerical problems with largeN .
In each Krylov subspace, the current guess for the solution,∆xk, is changed to minimise the residual:

resk = ||−r − J∆xk||

If convergence occurs, whereresk < ǫconv, the iterative procedure stops. Ifresk > ǫconv,
another matrix-vector product is taken to formKk+1. Another Arnoldi step is taken, to add another
orthogonal directionq

k+1
. The residual is then minimised in this extra direction. Thevectorsq

1
, .., q

k

are unchanged inKk+1, so the convergence of the GMRES method is monotonic.

3.2 Finite difference matrix-vector products

Matrix-free methods solve the equationJ∆x = −r using only matrix-vector products. In the
case of the Jacobian matrix the matrix-vector product can beapproximated by finite differences, be-
cause the Jacobian matrix is formed of partial derivatives.The mapping operator,A, which represents
the time marching process, is defined as:

x(T ) = A (x(0))

Therefore because the spatial part of the Jacobian matrix isdefined in equation (3) as shown in
equation (4),

Jij =
∂ (xi(0)− xi(T ))

∂xj(0)
(4)

then the matrix-vector product for arbitrary vectorv can then be approximated by equation (5), where
δ is small.

Jv = v −
A(x(0) + δv)−A(x(0))

δ
+O(δ) (5)

To evaluate each matrix-vector product during the GMRES solution therefore requires one
timemarch. The phase (θ) components of the Jacobian matrix are also partial differentials, and can
similarly be used in the finite difference approach. Finite difference matrix-vector products are simple
to evaluate, but care must be taken to ensure that there is adequate scaling between variables in the
state vector or numerical problems may arise.
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Figure 3: A 2D mixture fraction field (Z) is used to describe the diffusion flame. The flame lies on
theZ = Zst contour, which is shown as a black line in (a) and (b). The heatrelease from the diffusion
flame domain acts at locationxf in a 1D open ended duct.

4. Ducted 2D diffusion flame model

The continuation routines are applied to a model of a thermoacoustic system containing a ducted
2D diffusion flame, first used by [13, 14] and later adapted by Illingworth to improve the accuracy
by using a spectral discretisation [17]. The model containsa 2D flame domain, where the mixture
fraction,Z, is discretised on a Chebyshev grid, with an axis of symmetryalong the centreline. The
mixture fraction obeys the non-dimensional diffusion and advection governing equation, and is spec-
ified to beZ = 1 in the fuel pipe (0 < |y| < α) andZ = 0 in the oxidiser pipe (α < |y| < 1), with
boundary conditions∂Z/∂y|

+1,−1
= 0, ∂Z/∂x|xc→∞

= 0. The flame lies on the contourZ = Zst, and
is assumed to have an infinite reaction rate. The location of the flame is denotedf+.

The heat release from the model is coupled to a simple linear acoustic model of a duct [14, 9],
whereu andp are the nondimensional velocity and pressure pertubationsin the duct. For the per-
turbation state,x = [u, p, z], the non-dimensional governing equations are shown below,where the
subscriptf denotes that the value is taken at the flame position, a bar refers to a mean quantity. The
system has non-dimensional parameters: Peclet numberPe, the acoustic dampingζ , the stoichiomet-
ric mixture fractionZst, the flame position in the ductxf , the fuel pipe widthα, and the coupling
parameterβT , defined byβT = 2/(Tinlet − Tadiabatic).

∂u

∂t
= −

∂p

∂x
∂p

∂t
= −

∂u

∂x
− ζp . . .

+
2βT

1− Zst

δ (x− xf )

(

−

∫ ∫ f+

0

∂z

∂t
dydx+ uf

∫ f̄+

0

(

Z̄ − Zst

)

dy

)

∂z

∂t
= −ūf

∂z

∂x
+

1

Pe

(

∂2

∂x2
+

∂2

∂y2

)

z − uf

∂Z̄

∂x
− uf

∂z

∂x

A more complete description of the model is included in [17].The results in this paper are
generated with a30×16 symmetric flame grid and20 acoustic modes, giving a total system dimension
of 475 (the boundary values of the Chebyshev grid are defined by the boundary conditions so are not
included in this number). The model is timemarched in FORTRAN using the standard Runge-Kutta
4 technique with a timestep of10−3. The results of the model have been compared against those
generated with a finer Chebyshev grid and a finer timestep, with only a 1% difference in heat release
fluctuation observed.
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Figure 4: Continuation results for limit cycle amplitudes.The thick dark line is the Hopf bifurcation,
which is the same as the linear stability limit. The linearlyunstable region is shaded dark gray and
the bistable region is shaded light gray (the bistable region is the vertical shadow of the subcritical
bifurcation). Limit cycles are shown as dark dots on a surface interpolated between neighbouring
slices. The surface exhibits both subcritical bifurcations (a) and supercritical bifurcations (c), where
stable limit cycles are shown with a solid line and unstable limit cycles with a dashed line.

5. Numerical results

The next subsections show some of the physical results available from the continuation method
applied to the ducted diffusion flame model. Further physical examination of the results is found in
[17], and further examination of the numerics is found in [16].

5.1 Limit cycle surface

Figure 4 shows the limit cycle amplitudes as two parameters are varied: Peclet number, which
changes the ratio of advection to diffusion in the flame, andβT , which controls the extent to which
unsteady combustion perturbs the acoustics (Eq. (7a)). Theparameters that are held fixed areZst =
0.8, c1 = 0.0247, c2 = 0.018, α = 0.35, xf = 0.25, ML/H = 1. The damping coefficients are
typical for a laboratory scale combustor, andZst = 0.8 corresponds to a diluted methane fuel and
pure oxygen [15, p.94]. Each limit cycle is calculated to a tolerance of||x(0) − x(T )|| < 10−8

. The Hopf bifurcation marks the boundary between linearly stable and linearly unstable operating
conditions. The limit cycles form a surface which has both subcritical bifurcations for50 < Pe < 70
(Fig. 4a) and supercritical bifurcations forPe < 50, P e > 70 (Fig. 4c). Where there is a subcritical
bifurcation, there is a stable limit cycle at higher velocity amplitudes. However, this stable limit cycle
has velocity amplitude greater than 2 and is not shown in the figure. The bistable operating conditions
are those at which the system has both a stable fixed point and astable limit cycle.

The limit cycles describe the behaviour of the fully coupledsystem, and are calculated by
continuation analysis quite cheaply: the Hopf bifurcationline takes roughly 500s and the surface of
limit cycles takes 61 CPU hours. The surface is composed of 70slices and roughly 2500 converged
limit cycles, requiring an average of 52 minutes per slice, and 90 seconds per limit cycle. A lower
resolution surface can be calculated in less than 10 CPU hours, with 15 slices and coarser spacing
between limit cycles. The computation can be easily parallelized because the surface is composed of
separate two-dimensional slices.
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Figure 5: Snapshots of an unstable limit cycle at Pe=60, withvelocity amplitude0.62. In each
snapshot (a-h), the top two bars show the perturbation pressures and velocities in the 1D duct (xa =
0 → 1), the lower bar shows the 2D perturbationz field and current flame location (black line) in the
first part of the flame field (xc = 0 → 4). The flame location is marked by the black box atxa = 0.25.
Thez values are scaled by a factor of15 to share the colourbar with the acoustic perturbations. The
steadyZ field is shown in (i) for comparison.

5.2 Limit Cycles

The continuation analysis efficiently finds limit cycles, which can then be used to understand
the underlying coupled flame-acoustic interaction. Figure5 shows snapshots of the system during an
unstable limit cycle, with Pe=60 and velocity amplitude 0.62. When the velocity perturbation at the
flame is positive, 5(a)-(c), the flame becomes longer and, near the inlet, the regions of high and low
z are stretched. When the velocity perturbation at the flame becomes negative, 5(d)-(f), the flame
becomes shorter and, near the inlet, new regions of high and low z are formed. In turn, these new
regions are then stretched and convected down the flame. For this limit cycle, the length of the flame
only varies by∆xc ≈ 0.4 during the cycle, but slight wrinkling of the flame surface can be seen as
the regions of high and lowz are convected down the flame. The limit cycle has an almost symmetric
form during the first and second halves of the limit cycle, which demonstrates that the nonlinearity in
this flame model is weak.
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6. Conclusions

Matrix-free continuation analysis can calculate limit cycles efficiently for thermoacoustic sys-
tems with coupled flame-acoustic interaction. Continuation analysis can track the limit cycles and
bifurcations of the system as parameters vary, in order to find the stability limits of the system over a
wide parameter range.

The dissipative nature of thermoacoustic and fluids systemsmakes them particularly suitable for
matrix-free continuation with GMRES, because the number ofimportant bulk motions of the system
is in general much less than the total system dimension.

The continuation algorithms are used to generate a surface of limit cycles for the ducted diffu-
sion flame, with only modest computational time. Both subcritical and supercritical Hopf bifurcations
are found. The mode shapes of the limit cycles are given directly by the continuation algorithm. The
mode shapes give physical insight into the nature of the coupled flame-acoustic interaction.
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