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ABSTRACT
Thermoacoustic oscillations arise due to the coupling be-

tween the acoustic field and the fluctuating heat release in a
combustion chamber. In devices in which safety is paramount,
such as aircraft engines, thermoacoustic oscillations must be
eliminated passively, rather than through feedback control.
The ideal way to eliminate them is by changing the shape of
the device. To achieve this, one must calculate the sensitiv-
ity of each unstable thermoacoustic mode to every geometric
parameter. This is prohibitively expensive with standard meth-
ods, but is relatively cheap with adjoint methods. In this paper
we first present low-order network models as a tool to model
and study the thermoacoustic behaviour of combustion cham-
bers. Then we compute the continuous adjoint equations and
the sensitivities to relevant parameters. With this, we run an
optimization routine that modifies the parameters in order to
stabilize all the resonant modes.

INTRODUCTION
Thermoacoustic oscillations are a form of combustion in-

stabilities that may arise during the development of combus-
tion systems such as jet engines or gas turbines. These insta-
bilities appear due to the interaction between the flow field and
the unsteady heat release process and manifest as large am-
plitude oscillations. If the instabilities grow they can produce
noise, undesired vibrations and structural damage (Lieuwen
and Yang, 2005). Hence, thermoacoustic oscillations impact
the design of combustion systems.

Before the advent of analytical design tools, combus-
tion instabilities had to be mitigated via passive control tech-
niques or through an iterative empirical approach. Passive con-
trol methods include damping devices such as Helmholtz res-
onators or acoustic liners, which take advantage of thermo-

viscous losses and vortex shedding to stabilize the system.
However, these devices have the disadvantage of being ef-
fective only over a narrow frequency range and being unable
to respond to changes in operating conditions. On the other
hand, trial and error techniques are often exploited until a sta-
ble configuration is achieved. An example in jet engines is
presented in Mongia et al. (2003) where they review a case
in which several approaches to fix the instability were used,
such as alternate fuelling modes, Helmholtz resonators, spray
angle changes and fuel nozzle cavity fill and seal. Another ex-
ample are the multiple full scale tests performed on the F-1
engines to find a stable configuration for the baffles in the in-
jectors of the rocket engine (Oefelein and Yang, 1993). From
these examples it is clear that this method, although effective,
is prohibitively expensive and thus discouraged for practical
industrial applications.

During the last decades several methods to predict and
control combustion instabilities have been developed. These
allow for more complex active and passive control systems.
Active feedback control techniques (Dowling and Morgans,
2005) are able to adjust to the changing operating conditions
but rely on the capabilities of the sensors and actuators. Novel
hybrid control techniques, which consider variations in the ge-
ometry profile to stabilize a thermoacoustic system, have been
considered in Zhao and Morgans (2009) and Zhao et al. (2011).
In the first of these studies, Helmholtz resonators are tuned by
varying the neck areas in order to stabilize the resonant modes
in a Rijke tube. In the second, tuning of acoustic liners was
performed by varying the pipe length and the bias flow rate.
The major advantage of these techniques was that a broader
frequency range can be covered.

Although active and passive control methods have proven
to be effective at stabilizing thermoacoustic systems, these
techniques require the addition of controlling devices, which
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adds complexity and failure modes. In devices in which safety
is the primary concern, the ideal way to stabilize the system
is to generate a configuration that is, in principle, not prone to
these instabilities. Therefore, we are interested in developing
an automated shape modification routine that is capable of pro-
ducing a configuration that is stable to all modes within a given
frequency range. The major advantage is that the frequency
range can be as wide as the capability that the model has to
accurately capture the physics of the problem. To produce this
optimization algorithm we require a modelling approach, sen-
sitivity analysis and an optimization routine.

To model a combustor, a common approach is to use low-
order models. The approach used in this paper is similar to the
thermoacoustic network model developed by Stow and Dowl-
ing (2001) and extended in Dowling and Stow (2003). Such
models comprise a network of acoustic elements that allow
the propagation of acoustic and convective waves which are
connected by jump relations that enforce conservation of mass
momentum and energy. To extract the gradient information
of the system we use adjoint based sensitivity analysis. In
thermoacoustics, Magri and Juniper (2013) applied eigenvalue
sensitivity analysis using Galerkin methods and Aguilar et al.
(2017) using wave based methods. In these papers they assess
how resonant modes change when any of the parameters of
the system are varied. Some of the outcomes were experimen-
tally validated in Rigas et al. (2016); Jamieson et al. (2017);
Jamieson and Juniper (2017). Once the direction in which the
eigenvalues move is known, an optimization routine is required
to compute the optimal variations in the parameters that will
stabilize the configuration.

In this paper, we first introduce the low-order modelling
approach of the thermoacoustic problem. Then we briefly go
through the derivation of the adjoint equations and, with these,
perform sensitivity analysis on the geometric parameters. With
the above information we develop an optimization routine that
stabilizes a combustor rig by modifying its shape.

METHODOLOGY
Low order network modelling

The main elements of a network model are the straight
ducts, characterised by having cross sectional area A and
length L. They are governed by the one dimensional Euler
equations:
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where ρ is the density, p is the pressure, u is the axial ve-
locity, and γ is the ratio of heat capacities, which is assumed
to be constant. Following the formalism developed by Stow
and Dowling (2001), we linearise the equations by assum-
ing that small perturbations propagate through a homogeneous

base flow in the entire duct. The flow variables become
p = p̄(x) + p′(x, t), etc. By considering flow perturbations
with complex frequency ω the fluctuating variables turn into:
p′(x, t) = p̂(x)eiωt . The resultant governing equations form
a wave equation whose solutions are travelling waves: two
acoustic waves (A+ and A−) that propagate with speeds c̄± ū
(where c̄ is the mean speed of sound) and a convective wave
(AE ) that propagates at the mean flow speed (ū).

To connect the ducts and allow the base flow and the trav-
elling waves to propagate through the entire system, we con-
sider modules of area increase, area decrease and heat sources.
The modules of area increase assume that mass and energy
fluxes are conserved, and the axial momentum is increased by
the force exerted by the walls. Modules of area decrease as-
sume conservation of mass flux, entropy and energy flux. Fi-
nally, the heat source module considers the kinematic balance
of the source (i.e., Bloxsidge et al. (1988)) and assumes con-
servation of mass and momentum flux with an energy increase
by the heat release. This module includes the unsteady heat
release model, which is a velocity driven n− τ model:

Q̂
Q̄

= n
û1

ū1
e−iωτ (2)

Where Q is the heat release, n the interaction index and τ the
time delay. We have also used subscript 1 to denote that the
heat release model is proportional to the values just upstream
of the heat source.

To fully characterize the system, we require inlet and out-
let boundary conditions. The system can be modelled us-
ing open ends ( p̂ = 0), closed ends (û = 0), choked ends
and reflection coefficients (Rc). The reflection coefficients are
particularly interesting because they allow the model to use
complex valued impedances as boundaries and are given by:
A+ = RcA− at the inlet and A−eik−x0 = RcA+eik−x0 at the out-
let, where k± are the wave numbers and x0 is the coordinate of
the outlet boundary.

Using the different modules described above, we can build
a network model that resembles a combustor. To solve for the
eigenvalues of the system, we guess ω and, starting from the
inlet boundary condition, we propagate the solution through
each module until we reach the outlet boundary condition. In
general, this condition will not be satisfied. Hence we create an
iterative shooting method until the boundary condition is satis-
fied. The value of ω is then an eigenvalue, because it satisfies
the governing equations and boundary conditions.

The adjoint equations
To obtain the adjoint equations used for the sensitivity

analysis we first create a Lagrangian functional. Considering
that [·, ·] is an appropriate inner product, the functional in its
more general form is given by:

L ≡ ω−
[
q̂+,P(ω, q̂,G)

]
−
[
G+,B(G)

]
, (3)
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where ω is the eigenvalue of interest. q̂+ is the vector of La-
grange multipliers associated with P, which is the vector of
perturbation equations, jump conditions, and boundary condi-
tions that depend on the eigenvalue ω , the perturbation vari-
ables q̂ and the base flow variables G. G+ is another vector
of Lagrange multipliers associated to B, which is the vector of
base flow equations, jump conditions and boundary conditions
that depend on the base flow variables G.

Following the continuous adjoint method developed in
Aguilar et al. (2017) we use the first inner product in Eq. (3)
to compute the adjoint perturbation equations for the ducts, the
adjoint jump conditions for each of the area increase, area de-
crease and heat source modules and the associated inlet and
outlet adjoint boundary conditions. We note that changing a
parameter such as the area induces base flow variations. There-
fore, when computing the sensitivities we need to account for
the changes generated in the perturbation equations and in the
base flow. To compute the latter we require the knowledge of
the adjoint base flow equations which are computed using the
second inner product in the Lagrangian functional and follow-
ing the procedure presented in Marquet et al. (2008).

Sensitivity analysis
In this study we are interested in knowing the eigenvalue

drift whenever we make a small change in any of the geometric
or heat source parameters. To compute the sensitivities we fol-
low the methodology presented in Aguilar et al. (2017), which
requires the knowledge of both the direct and the adjoint vari-
ables. Then, vanishing the derivative of the Lagrangian func-
tional Eq. (3) with respect to the desired base state variable
gives the sensitivity of the variable with respect to the eigen-
value. In this paper, the relevant base state variables are the
area and length of the ducts, and the time-delay of the heat
source.

Optimization
With the adjoint based sensitivity information, we can im-

plement an optimization routine that resembles a gradient de-
scent method. In this study we are interested in producing
a configuration which stabilizes all of the unstable resonant
modes of a thermoacoustic system. Hence, the following opti-
mization routine is executed:

1. Compute the resonant modes of the system.
2. Compute sensitivity of the eigenvalues with respect to the

relevant parameters: A,L,τ .
3. Given a set of constraints in the system, the sensitivi-

ties, and a maximum allowed change in the parameters,
compute, by means of an optimization algorithm, the
changes in the configuration, such that the new configu-
ration evolves according to the cost function.

4. Update the configuration and iterate the process until all
of the resonant modes are stabilized.

The cost function: by introducing a small change in one of
the system’s parameters (denoted by δx), the eigenvalues shift.
The predicted eigenvalue Ω j is given by: Ω j = ω j + δω j,

where ω j is a resonant mode of the system, and δω j is the
corresponding eigenvalue drift, which is given by:

δω j =
Nx

∑
k=1

∂ω j

∂xk
δxk, (4)

where Nx is the number of relevant parameters in the system.
In the studied frequency range the system will have Nω reso-
nant modes, each of them represented by: ω j = σ j− iλ j where
σ is the angular frequency and λ is the growth rate. Our ob-
jective is to stabilize all of the resonant modes (i.e., λ j < 0
for j = 1, ...,Nω ) by introducing small changes into the system.
To ensure that all the modes are stabilized we set an objective
growth rate λo such that λo ≤ 0. Once a mode reaches this
objective we will not seek to stabilize it any more. With this
information we build a predictor function Ψ j(δx). This func-
tion gives 0 if a mode is or becomes stable or the growth rate
plus the shift if it is unstable:

Ψ j(δx) =

{
Φ j(δx) if Φ j(δx)> 0,
0 if Φ j(δx)< 0,

Φ j(δx) = λ j +
Nx

∑
k=1

∂λ j

∂xk
δxk︸ ︷︷ ︸

−Im{Ω j(δx)}

− λo.

The reduced version of the cost function J (δx), which we
minimize, is then given by the sum of the predictor functions
over all of the eigenvalues of the system.

By setting the objective growth rate to be λ0 ≤ −1 we
can further add a small constraint to the cost function in order
to select the parameters that produce the smallest variations in
the configuration. By considering δxmk , the maximum allowed
change of the kth parameter the cost function becomes:

J (δx) =
Nω

∑
j

Ψ j(δx)︸ ︷︷ ︸
Reduced version

+
1

Nx

NX

∑
k=1

|δxk|
δxmk

. (5)

Whenever all the modes are stable, the first summation in the
cost function is zero so the algorithm seeks the configuration
that requires the smallest change.

Maximum allowed change: the maximum allowed
change of a parameter in the system is set as the largest in-
crease in its magnitude (given as a percentage of its original
magnitude) before the Taylor test1 fails due to higher order ef-
fects appearing in the finite difference computation.

Optimization algorithm: the optimization routine re-
sembles a gradient descent method, where the cost function

1The Taylor test compares the eigenvalue drift calculated with the adjoint
method (δωA) against the one computed via a finite difference (δωF ). Given
a small change in a parameter (δx), the difference between eigenvalue drifts
(|δωF −δωA|) grows linearly with the square of the small change (δx2).
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is the sum of the growth rates of the unstable eigenvalues and
the gradient is given by the sensitivities. Hence the easiest op-
tion to compute the values of δx would be to perform a line
search. However, given the behaviour of the cost function Eq.
(5), together with the upper and lower bounds given by the
maximum allowed change, it is better to use an interior point
method to look for the optimal values of δx. The constrained
minimization problem which is to be solved using a barrier
method is:

minimize J (δx)

subject to −δxmk ≤ δxk ≤ δxmk , k = 1, ...,Nx

APPLICATION: Rama Balachandra’s burner
Rama Balachandra’s burner is a 10 kW combustor rig built

in CUED, originally intended for the experimental investiga-
tion of the response of turbulent premixed flames to acoustic
oscillations (Balachandran, 2005). One of the experimental
cases focuses on a configuration with no swirl and imperfectly
premixed combustion prone to self-excited oscillations. The
geometry consists of an inlet duct connected to a plenum with
a varying cross section at both ends, followed by the middle
concentric ducts which contain the fuel injection plane and a
centred bluff body which becomes the flame holder and finally
a cylindrical pipe enclosure. The configuration is shown in
Fig. 1.

Model inputs
Network model: to model the rig using the network

model, we consider a total of 124 straight ducts. The vary-
ing cross sections of the plenum are modelled as a sequence
of 50 area increase steps and 50 area decrease steps. To model
the bluff body we further consider 20 area decrease steps.

Steady flow inputs: we consider air properties and con-
stant specific heat capacities. At the inlet we consider atmo-
spheric conditions and assume that air is supplied with a ve-
locity of ū= 5.16 m/s to match the experimental measurement
at the bluff body of ū = 9.90 m/s (Balachandran, 2005). We
consider an open outlet and a flame anchored to the bluff body
that supplies the system a steady heat input of Q̄c = 5.00 kW.

Fluctuating flow inputs: for the boundary conditions we
consider an inlet modelled by an acoustic reflection coeffi-
cient with Rc = 0.85+10i, which resembles an almost closed
end. The outlet is modelled with a frequency-dependent reflec-
tion coefficient of a circular duct radiating sound, originally
proposed by Levine and Schwinger (1948). We will use the
version that considers a mean flow proposed by Peters et al.
(1993). Taking r as the duct radius, the reflection coefficient
gives:

Rc =−(1+ M̄A(St))
(

1− 1
2

(
ωr
c̄

)2
)

ei(k+−k−)δ (St), (6)

where M̄ = ū/c̄ is the Mach number, St = Re{ω}r/(2π ū) is
the Strouhal number, A(St) is a mean flow correction and δ (St)
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FIGURE 1: Schematic of Rama Balachandra’s combustor rig.

is the end correction. The last two are functions that depend on
the Strouhal number only. In the cases that we will be explor-
ing the Mach number is small and the frequencies big enough
to consider the limiting behaviour of these quantities which are
A(St) = 0.90 for St → ∞ and δ (St) = 0.6133r for M̄→ 0 and
St→ ∞.

For the heat source, we will explore a velocity driven kine-
matic flame, with interaction index n = 3.33 and time delay
τ = 8.4×10−3s, which approximately matches the experimen-
tal results reported in (Balachandran, 2005).

The resonant modes
For frequencies up to 1000 Hz, Fig. 2 shows the loga-

rithmic boundary condition error at the outlet for Rama Bal-
achandran’s rig. For the kinematic flame we observe that there
are 7 unstable modes at 61, 162, 346, 433, 530, 621 and 736
Hz (where the boundary error is minimal). We observe that
there is an unstable resonant mode near 348 Hz, which is the
reported frequency for the self-excited combustor in the exper-
imental investigation of Balachandran (2005).

Sensitivity analysis
The sensitivity analysis will be performed in every iter-

ation of the optimization routine. In Fig. 3 we present the
results for the initial configuration to analyse the initial trajec-
tories of the changes in the geometry. The first observation
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FIGURE 2: Logarithmic boundary condition error plot for the
initial configuration of Rama’s burner. The white markers de-
note the resonant modes found with the shooting method. Only
resonant modes with growth rate λ >−30 s−1 are considered
in this plot.

is that length sensitivities are one order of magnitude smaller
than area sensitivities. The former can be explained given that
a change in area causes base flow variations while a change in
length does not. Hence, for area changes, the base flow sensi-
tivity adds on to the unsteady sensitivity. In terms of sensitivity
to changes in length, we observe that the plenum is close to the
negative extreme so we expect an increase in length in the first
iterations. The concentric ducts in the middle and the combus-
tion chamber are close to the positive extreme, thus we expect
them to shrink. We note that the sensitivity to changes in area
of the inlet duct lies on the negative extreme, thus an increase
in size is expected. The concentric ducts in the middle are
close to the positive extreme hence we anticipate a reduction
in area. Finally, the sensitivity of the area at the flame holder
position is close to the negative extreme, so an area increase is
likely in this region. In terms of time delay sensitivity we ob-
serve that it is an order of magnitude bigger than the area sen-
sitivity, but there is no general trend for the growth rate shift.
Therefore, to stabilize the system, we expect minor changes in
this parameter.

Shape modification for stability
To run the optimization routine, we first identify the pa-

rameters that can be modified and then the constraints of the
system, since these will determine the evolution of the config-
uration. Geometric parameters such as areas and lengths can
be changed. The time delay in the unsteady heat release can
also be changed, given that it is often related to the convec-
tion time of the fuel from the injection point until it reaches
the flame (Dowling and Stow, 2003) and thus is determined by
the geometry and the flow speeds. In summary, we define the
following constrained cases:

• Case 1: Every module in the network is allowed to change
only their area.

• Case 2: Every module in the network is allowed to change
their length and area.
• Case 3: Every module in the network is allowed to change

their length and area. The time delay in the flame param-
eters is also allowed to change.

We also keep a linear radius variation in the varying cross sec-
tions of the plenum and the bluff body.

Before starting the optimization routine, each of the sensi-
tivities is checked with a Taylor test to ensure that they are cor-
rectly computed and to obtain the maximum allowed change.
The maximum change was set to 1% of the current magnitude
of the lengths and areas and 0.1% of the time delay. The cost
function is given by Eq. (5). The objective growth rate is taken
as λo =−5/s.

RESULTS
Figs. 4 and 5 show the initial and final configurations and

spectrum for the burner with a kinematic flame after allowing
the parameters to change according to the optimization rou-
tine until all of the resonant modes in the studied regime are
stabilized.

Case 1: Areas only. From Fig. 4a we observe that the
inlet duct, plenum and combustion chamber increased area,
while the concentric ducts in the middle decreased area. The
bluff body area reduction region changed to a region of area
increase, the ratio of the area of the flame holder with respect
to its original value is: 169%.

Case 2: Lengths and areas. From Fig. 4b we observe
that the inlet duct and the combustion chamber gained volume,
while the plenum and the concentric ducts in the middle lost
volume. The area of the flame holder increased 178% with
respect to its original value.

Case 3: Lengths, areas and time delay. From Fig. 4c we
observe a similar evolution as in the previous case but the com-
bustion chamber is longer. The time delay variation is 2.1%
with respect to the original value.

DISCUSSION
From the boundary error plot in Fig. 2 it is clear that the

thermoacoustic system is very unstable due to the amount of
unstable eigenvalues, and also due to the magnitude of the
growth rates. The consequence of this behaviour are the big
changes required in the configuration to achieve full stability,
which is observed in Fig. 4.

Some tendencies in the changes of the geometric parame-
ters present in all cases are that: the inlet duct area increases,
the middle concentric ducts area decreases, the combustion
chamber gains volume, and the flame holder area increases.
Most are predicted from the sensitivity analysis performed in
the initial configuration of the rig. We further note that the
change in the time delay is small. This is explained by the fact
that the cost function is the sum of growth rates from many
unstable eigenvalues. The direction of the growth rate shift
is different for each eigenvalue and the influence of the time
delay on the sum of these seems to be small.
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(a)

(b)

(c)

FIGURE 3: Sensitivity maps for the unstable modes in the initial configuration of Rama Balachandra’s burner. (a) and (b) map the
average growth rate shift due to changes in lengths and areas respectively. (c) shows the growth rate shift due to variations in the
time delay of the unsteady heat release for every unstable resonant mode.
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FIGURE 4: Initial (red) and final (blue) configurations for Rama’s burner with a kinematic flame after all the resonant modes have
been stabilized. (a), (b) and (c) show the configurations for variations in areas (Case 1), lengths and areas (Case 2) and lengths,
areas and time delay (Case 3), respectively.

It is worth mentioning that during every iteration of the
optimization routines, the most expensive computation is the
calculation of the resonant modes. Solving for the adjoint
variables, performing sensitivity analysis and running the op-
timization routine, account only for an additional computation
each.

CONCLUSIONS
The main goal of this paper is to passively stabilize a

model of a thermoacoustic rig by changing the geometric or
heat source parameters using an adjoint-based optimization
routine. First, we present the low-order model used to capture
the physics of the system. Then we show how to obtain the ad-
joint equations and perform the sensitivity analysis. Then we
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(a)

(b)

(c)

FIGURE 5: Eigenvalue trajectories from the initial (unstable)
to the final (stable) configuration. The initial and final config-
urations are represented by the diamonds and circles respec-
tively. Modes that emerge or vanish during the evolution of
the configuration are represented by the triangles and squares
respectively. (a), (b) and (c) show the spectrum for variations
in areas (Case 1), lengths and areas (Case 2) and lengths, areas
and time delay (Case 3), respectively. Only resonant modes
with growth rate λ >−30 s−1 are considered in these plots.

describe the optimization routine used to stabilize all the reso-
nant modes of the system. Finally we apply this methodology
to a model of a laboratory-scale rig in order to stabilize all of
the resonant modes by changing the geometric and heat source
parameters.

We show that the adjoint equations efficiently extract the
gradients of the eigenvalues with respect to all parameters of
the model. Initially, there are several unstable eigenvalues,
and others become unstable during the optimization process.
The cost function used in the optimization routine accounts for
this and manages to stabilize all the eigenvalues of the burner.
For this burner, it does so by making the inlet ducts, flame
holder, and combustion chamber larger, while making the mid-
dle ducts smaller. This is not necessarily the only way to sta-
bilize all the modes; it is likely that other configurations could
be found with different starting conditions and optimization
procedures.

The adjoint-based optimization routine in this paper could
be used in the design phase to adjust the shape of a device in

order to avoid thermoacoustic instability across multiple pos-
sible modes. It requires shape modifications, rather than the
addition of devices such as Helmholtz resonators or acoustic
liners. In industry, the cost function would need to be com-
bined with practical constraints, but this should be relatively
straight-forward. This method could be applied to larger and
more complicated models. Thermoacoustic systems are, how-
ever, notoriously sensitive to small changes in some parame-
ters. Therefore, although this method will work in general, the
results will be quite specific to each configuration. Further,
the results are only as good as the underlying thermoacoustic
model.

The next stage of the research is to extend this approach
to two dimensional configurations such as annular combustors.
This will enable us to study the impact of circumferential and
plane waves in the evolution of the geometric profiles.
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