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Abstract

Many studies have shown that low-density jets exhibit self-excitedvaricose os-

cillations. We use direct numerical simulation of the low Mach number Navier{

Stokes equations to perform a linear global stability analysis of a helium jet at

the threshold of onset of these oscillations. We calculate the directand adjoint

global modes and overlap these to obtain the structural sensitivity. We �nd that

the structural sensitivity has high magnitudes in the shear layer downstream of

the entrance plane, where the ow is absolutely unstable. We use the direct and

adjoint global modes to calculate the e�ect of a control force on the growth rate

and frequency of the unstable mode. We produce maps of the regions of the

ow that are most sensitive to localized open loop steady forcing in the form

of a body force and a heat source. We �nd that the most sensitive location for

open loop steady forcing is the area around the shear layer, around 2 jet di-

ameters downstream of the exit plane, and that the inuence of steady forcing

and heat injection is advected by the ow outside the jet. We use these maps

to calculate the inuence of a ring placed in the ow. When the ring is at the

same temperature as the ow, it inuences the ow through its dra g. The ring

has most inuence when placed in the inner edge of the shear layer. When the

ring is heated, it also inuences the ow through the density reduction caused

by heat input. In this case, the ring has most inuence when placed inthe outer

edge of the shear layer. It is also inuential when placed outside thejet because

the expanded gas is advected towards the jet. In both these cases, the inuence
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of the steady change to the base ow is signi�cantly greater than the inuence

of an unsteady feedback force caused by the ring.
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1. Introduction

Many studies have shown that the stability of a jet discharging into an

ambient uid depends strongly on the jet's density. For example, spectra of

hot-wire velocity measurements in helium-air jets [1] and pressure measurements

in heated air jets [2] showed that low-density jets exhibit sharp discrete peaks

in the measured spectra, while uniform-density jets exhibit weak broad peaks.

These sharp discrete peaks are caused by self-excited varicose oscillations in the

low-density jets, which arise because the initially steady jet is globallyunstable.

This global instability arises from a region of local absolute instability at the

jet exit plane. [3, 4, 5, 6] Theoretical studies have shown that global instability

arises due to a hydrodynamic feedback mechanism in the region of local absolute

instability. [7, 8]

Several experimental studies have examined the control of these self-excited

oscillations. These studies have used loudspeakers for active feedback control

[9], and thin hot-wires [10] or co-ow [11] for passive control. The goal of

such control is to render the jet globally stable by perturbing the base ow

and disrupting the feedback mechanism that drives the oscillations. For this

goal, a global linear stability analysis around the steady base ow is the most

appropriate tool, particularly in the form of a base ow sensitivity an alysis

[12, 13]. These analyses require the direct global mode and the adjoint global

mode to be calculated.

In this numerical study, we perform a base ow sensitivity analysis on a

low-density jet. We use the low Mach number formulation of the Navier{Stokes

(NS) equations [14]. This is well-adapted to studies of hydrodynamic instabil-

ity in low-density jets and ames because it permits density variations due to

temperature and composition but excludes acoustic waves. This signi�cantly
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reduces the computational e�ort. We use the direct and adjoint global modes

to identify the e�ect of regions of the ow in which the introduction o f a thin

axisymmetric control ring can change the frequency or growth rate of the global

instability. We also determine the inuence of heat transfer from the ring, which

has a particularly strong inuence on the instability of a low-density j et.

2. Flow con�guration

We study the axisymmetric motion of a low-density jet in a cylindrical d o-

main that has radius Rmax and length X max . The jet uid enters the domain

at x = 0 and is aligned along the axis, r = 0. The uid in the domain is de-

scribed in terms of its velocity u = ( ux ; ur )T , density � , and temperature T . A

di�erence in chemical species between the jet uid and the surrounding uid is

described using the mixture fraction, Z , which has a value ofZ = 1 for the jet

species andZ = 0 for the surrounding uid.

The uid motion is described by the axisymmetric low Mach number (LMN )

equations in nondimensional form:

@�
@t

+ r � (� u) = 0 (1a)

@(� u)
@t

= �r p + r � (
1

S1Re
� � � uu ) + Ri (1 � � )ĝ ;

(1b)

�
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+ u � r Z
�

=
1
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r 2Z; (1c)

�
�
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+ u � r T
�

=
1

S1ReP r
r 2T; (1d)

� [(S1 � 1)Z + 1] [( S2 � 1)T + 1] = 1 ; (1e)

where � =
�
r u + ( r u)T

�
� 2

3 (r � u)I is the non-isotropic component of the

rate-of-strain tensor. The ow variables are nondimensionalized by the jet di-

ameter, the jet axial velocity at inlet, and the ambient density. The Reynolds

number, Re, is de�ned in terms of the jet diameter, the jet axial velocity at

inlet, and the jet density. This de�nition introduces a 1 =S1 factor in front of
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the viscous terms in equations (1). The nondimensional temperature is de�ned

as T = ( T � � T0)=(T1 � T0), where T � is the dimensional temperature, T1 is

the maximum temperature, and T0 is the ambient temperature. The ratio of

the ambient density to the jet density de�nes the density ratio parameter, S1,

and the ratio of the maximum temperature to the ambient temperature de�nes

the temperature ratio parameter, S2. The Prandtl number, Pr, and Schmidt

number, Sc, describe the ratio of the di�usivity of temperature and mass, re-

spectively, to the di�usivity of momentum. In this study, we wish to m odel

an isothermal helium jet exiting into atmospheric conditions. This ow has a

density ratio of S1 = 7 :0. For an isothermal ow, S2 can be set to any value

other than 1:0. This is because, for an isothermal ow, it de�nes a nominal

temperature to nondimensionalize the equations of motion. We setS2 = 2 :0 for

simplicity. In this fundamental study, we assume that the viscosity and thermal

di�usivity are uniform throughout the ow, and set P r = Sc = 1 :0, in line

with Lesshaft et al [3]. The Richardson number,Ri , represents the ratio of the

bouyancy force to the inertial force. In this study, we are interested in the case

where buoyancy e�ects are negligible and the dynamics of the low-density jet

are dominated by the inertial force, and therefore, we setRi = 0. Such a ow

con�guration is typical of previous experimental studies [15, 11, 9, 16]. Global

instability has also been observed in buoyant jets [17], but is not examined in

this study.

Equations (1a){(1e) can be expressed in terms of the momentum,m � � u,

temperature, T , and mixture fraction, Z , as

@q
@t

= N (q); (2)

whereq � (mx ; mr ; Z; T )T is the state vector andN (�) is a nonlinear di�eren-

tial operator representing the action of the equations on the state vector. The

density, � , is not included in the state vector because it can be derived fromT

and Z . We use a direct numerical simulation (DNS) code from previous studies

[18, 19] to solve these equations. A fourth-order Runge-Kutta scheme is used to

march the discretized equations forward in time. The equations arediscretized
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in space using a sixth-order compact �nite di�erence scheme. We use a grid

with 255 � 2049 points for a domain measuring 8:0 � 36:0 jet diameters in the

radial and axial directions respectively. We assess numerical convergence in

Appendix A, where we compare the growth rates and frequencies of the global

modes produced on a range of computational domains and mesh resolutions.

Along the lateral boundary, at r = Rmax , we use a viscous traction free

boundary condition for the momentum and set T = 0 and Z = 0. At the

outlet boundary, at x = X max , we use a convective boundary condition for

the momentum, temperature and mixture fraction. These boundary conditions

model ow into a semi-in�nite domain in the downstream and radial dire ctions.

The pressure-projection scheme used in the code uses a discretecosine transform

to set boundary conditions for the pressure at the inlet and outletboundaries.

For this study, we use a half-wave cosine transform, which setsdp=dx = 0 at

the inlet and outlet boundaries. Along the lateral boundary, we setp = 0. At

the inlet to the domain, we impose velocity and mixture fraction pro�le s formed

from Michalke's pro�le number two [20], with a shear-layer thickness parameter

D=2� 0 = 14:0. This signi�es that the momentum thickness of the shear layer is

14 times smaller than the jet radius. We also add a co-ow velocity of 1% of

the jet velocity around the jet to improve numerical stability.

This study is performed near the threshold of global instability, at which

point a linear global stability analysis is most relevant to the fully nonlinear case.

For this set of parameters and inlet pro�le, we �nd that this is at Re = 470. The

linear global mode has a frequency ofSt = 0 :165. In comparison, Hallberg &

Strykowski [15] (Figure 5) report the onset of global instability in a helium jet of

similar shear-layer thickness at approximately 550� Re � 750 and �nd that the

nonlinear global mode has a frequency of 0:18 � St � 0:22. We attribute the

di�erence between our linear global stability analysis and their experimental

observations to the di�erences in the jet velocity and density pro� les. Both

of these have been found to have a signi�cant e�ect on the onset of absolute

instability in low-density jets. [5, 21]
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Figure 1: (a) Streamlines of the base ow and (b) the local abs olute growth rate of an

isothermal helium jet at Re = 470. (c) The direct global mode a nd (d) the adjoint global

mode, shown as the real part of the axial momentum. (e) The str uctural sensitivity, with a

maximum of 4 � 103 .

3. Global stability analysis

We obtain a steady axisymmetric base ow, �q (x; r ), such that N (�q ) = 0,

using selective frequency damping (SFD) [22]. The streamlines of thisbase ow

are shown in �gure 1(a). The entrainment of the ambient uid into th e jet is

signi�cant and we will show later in the paper that it can have a strong e�ect

on the stability of the ow.

The evolution of small axisymmetric perturbations q0 around this steady

base ow is governed by the linearized LMN equations. We decomposethe

axisymmetric perturbations into Fourier modes in time:

q0(x; r; t ) = q̂ (x; r )e�t + complex conjugate; (3)

where � � � + i ! is the eigenvalue. This contains the growth rate, � , and

frequency, ! , of the corresponding two-dimensional eigenmode,̂q (x; r ), that
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would grow or decay on top of the steady base ow. The direct global modes

are obtained by solving the matrix eigenvalue problem

� q̂ = Lq̂ ; (4)

where L is a discretized operator that describes the linearized LMN equations.

We also obtain the adjoint global modes, which are solutions of

� � q̂ + = L + q̂ + ; (5)

where L + is the discretized version of the continuous-adjoint LMN equations.

We solve these eigenvalue problems using the code developed by Chandler et

al [19]. The code uses matrix-free time-stepping and the implicitly restarted

Arnoldi method to �nd the most unstable global modes. For the direct global

modes, we use a convective boundary condition at the outlet boundary and set

m̂x = m̂r = T̂ = Ẑ = 0 on the lateral and inlet boundaries. For the adjoint

global modes, we set ^m+
x = m̂+

r = T̂ + = Ẑ + = 0 on all boundaries. The half-

wave cosine transform used in the code setsdp̂=dx = dp̂+ =dx = 0 at the inlet

and outlet boundaries. We �nd that this gives better agreement between the

direct and continuous-adjoint eigenvalues than that observed byChandler et al

[19], who used a quarter-wave cosine transform to setdp̂=dx = p̂+ = 0 at the

inlet and p̂ = dp̂+ =dx = 0 at the outlet.

Figure 2 shows the eigenvalues corresponding to the 25 least stablemodes.

At this Reynolds number, we �nd one mode that is marginally unstable, and

a branch of low-frequency stable modes. These stable modes correspond to

free-stream vortical modes - similar to those observed in a uniform-density jet

[23].

The direct global mode, q̂ (x; r ), corresponding to the marginally unstable

mode is shown in �gure 1(c). Its corresponding adjoint global mode, q̂ + (x; r ), is

shown in �gure 1(d) and the structural sensitivity, de�ned here a s the Frobenius

norm of the tensor Sij = m̂ i (m̂ +
j )� , is in �gure 1(e).

The absolute growth rate decays monotonically from the entranceplane and

the ow is absolutely unstable for 0 � x < 5:0. The structural sensitivity has
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Figure 2: Eigenvalue spectrum for axisymmetric modes for th e base ow shown in �gure 1(a).

The 25 least stable modes are shown.

high magnitudes in the shear layer in this region. The structural sensitivity

identi�es the region of the ow that is most sensitive to internal feedback mech-

anisms - where the direct global mode optimally excites itself. We followearlier

studies [24] and refer to this region as the wavemaker of the ow. This region

does not, however, necessarily correspond to the region where an external con-

trol force has most inuence on the growth rate and frequency of the unstable

mode. This is because a control force also changes the base ow and this change

in the base ow is not accounted for in the structural sensitivity.

4. Sensitivity to a control force

We now consider the e�ect of a small control force on the marginallyunstable

eigenvalue. We model the control force by adding source terms tothe right-hand

side of equation (2):

@q
@t

= N (q) + F: (6)

where F � (%;f ; 0;  T )T contains the source terms added to the right-hand

side of the continuity, momentum, species and energy equations respectively.

The source term in the species equation has been set to zero. The variables %,

f and  T are the non-dimensional rates of addition per unit volume of mass,
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momentum, and thermal energy into the ow. In this linear stability f ramework,

the control force has a steady component,�F , that acts on the base ow, �q , and

a linearized perturbation, f 0, that acts on the linear perturbations, q0. The

e�ects of these two components are modelled separately following the approach

of Marquet et al [25].

The eigenvalue of the global mode,� , is a function of the base ow �elds, �q ,

and these are, in turn, functions of the steady components of the forcing terms,

�F. The e�ect of �F on � is calculated by formulating a constrained Lagrangian

problem

L = � � h �q + ; N (�q ) + �F i � h q̂ + ; � q̂ � Lq̂ i (7)

and calculating r �F � , the functional derivative of � with respect to (w.r.t) �F .

This is labelled the sensitivity of the eigenvalue to steady forcing. Thenonlinear

and linearized Navier{Stokes equations act as constraints in this problem. The

notation ha; bi denotes an inner product over the computational domain volume

V ,

ha; bi =
1
V

Z

V
aH b dV; (8)

where aH denotes the Hermitian (i.e. complex conjugate transpose) ofa. The

Lagrange multipliers, �q + and q̂ + , are the adjoint base ow and adjoint global

mode �elds respectively.

The sensitivity to steady forcing is equal to the functional derivative of L

w.r.t �F when all the constraints are satis�ed. To �nd this, we �rst set the

functional derivatives of L w.r.t all other variables to zero. The derivative

w.r.t q̂ leads to a set of equations that de�nes the eigenvalue problem for the

adjoint global mode, � � � q̂ + + L + q̂ + = 0. The derivative w.r.t � leads to the

normalization condition hm̂ + ;m̂ i + hẐ + ; Ẑ i + hT̂ + ; T̂ i = 1. The derivative w.r.t

�q leads to a set of equations for the adjoint base ow �elds, �L + �q + = �g + . The

derivative w.r.t �F then shows that the sensitivity of the eigenvalue to steady

forcing is obtained from the relevant adjoint base ow �eld. Similarly, the

sensitivity of the eigenvalue to unsteady harmonic forcing is obtained from the

relevant adjoint global mode �eld.
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For incompressible ow, the adjoint base ow operator �L + is equivalent

to the continuous-adjoint operator L + . [12] For our formulation of the LMN

equations, however, these two operators are di�erent. The adjoint base ow

equations can be written in full as

@�m+
i

@xi
= 0 (9a)

�
�mj

��

 
@�m+

i

@xj
�

@�m+
j

@xi

!

�
@�p+

@xi
�

1
S1Re��

 
@2 �m+

i

@x2j
+

1
3

@2 �m+
j

@xj @xi

!

+ �T + @�T
@xi

+ �Z + @�Z
@xi

= �f +
i

(9b)

� �mi
@�Z +

@xi
�

1
S1ReSc

@2 �Z +

@x2i
+ �K 2 �� �� + = � Z (9c)

� �mi
@�T +

@xi
�

1
S1ReP r

@2 �T +

@x2i
+ �K 1 �� �� + = � T (9d)

�mi �mj

�� 2

@�m+
i

@xj
+

�mi

S1Re�� 2

 
@2 �m+

i

@x2j
+

1
3

@2 �m+
j

@xj @xi

!

+
�� +

��
= �%+ (9e)

where �K 1 � (S2 � 1)
�
(S1 � 1) �Z + 1

�
and �K 2 � (S1 � 1)

�
(S2 � 1) �T + 1

�
are

constant scalar �elds. The complex �elds that constitute �g + � (0, �f +
i , � +

Z ,

� +
T )T and �%+ on the RHS need to be calculated �rst from the base ow and the
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direct and adjoint global modes as

�f i
+

�
�

m̂�
j

��
�

�̂ � �mj

�� 2

�  
@̂m+

i

@xj
+

@̂m+
j

@xi

!

�
�̂ �

S1Re�� 2

 
@2m̂+

i

@x2j
+

1
3

@2m̂+
j

@xj @xi

!

� � �

� � � �

 
T̂ +

��
+ �K 1p̂+

!
@̂T �

@xi
�

 
Ẑ +

��
+ �K 2p̂+

!
@̂Z �

@xi
; (10a)

� +
Z �

@
@xj

 
Ẑ + m̂�

j

��

!

� (S2 � 1)(S1 � 1)p̂+

 

�mj
@̂T �

@xj
�

1
S1ReP r

@2T̂ �

@x2j

!

� � �

� � � � (S2 � 1)(S1 � 1)�̂ + T̂ � ; (10b)

� +
T �

@
@xj

 
T̂ + m̂�

j

��

!

� (S2 � 1)(S1 � 1)p̂+

 

�mj
@̂Z �

@xj
�

1
S1ReSc

@2Ẑ �

@x2j

!

� � �

� � � � (S2 � 1)(S1 � 1)�̂ + Ẑ � ; (10c)

�%+ � �
m̂�

j

�� 2

@̂p+

@xj
+

T̂ +

�� 2

 

�mj
@̂T �

@xj
+ m̂�

j
@�T
@xj

!

+
Ẑ +
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�mj
@̂Z �

@xj
+ m̂�

j
@�Z
@xj

!

� � �

� � � �
T̂ +

S1ReP r �� 2

@2T̂ �

@x2j
�

Ẑ +

S1ReP r �� 2

@2Ẑ �

@x2j
�

�
�mi m̂�

j

�� 2 +
m̂�

i �mj

�� 2

�
@̂m+

i

@xj
� � �

� � � �
1

S1Re

�
m̂�

j

�� 2

�  
@2m̂+

i

@x2j
+

1
3

@2m̂+
j

@xj @xi

!

(10d)

Based on previous studies on incompressible and compressible ows,�g + can be

used to describe the sensitivity of the eigenvalue to arbitrary baseow modi�ca-

tions. Using the chain rule, we can express�g + in terms of primitive variables to

derive the sensitivity of the eigenvalue to modi�cations of the base ow velocity

and density pro�les

r �u i � = �� �f +
i (11a)

r �� � = �%+ �
1

�� 2 �K 2

� +
Z �

1
�� 2 �K 1

� +
T (11b)

Once this has been calculated, the adjoint base ow equations can be solved.

To solve the adjoint base ow equations, we add time-derivative terms to

the LHS of equations (9b){(9d) and use a fourth-order Runge-Kutta scheme

to march the axisymmetric form of the equations forward in time until the

l2-norm of the di�erence between the adjoint base ow state vectors at two

succesive timsteps is less than 10� 6.

11



Figure 3: The sensitivity of the marginally unstable eigenv alue of a helium jet at Re=470

to steady forcing, r �F � . The colours show the sensitivity of the growth rate, r � (left), and

frequency, r ! (right) to a (a) steady axial body force, �Fx (b) steady radial body force, �Fr ,

and (c) steady heat input, � T . The contour lines show the absolute value of r � for each row.

12



Figure 3 shows the adjoint base ow �elds for the marginally unstable global

mode of the isothermal helium jet at Re = 470. The real part of the adjoint

base ow �elds determines the sensitivity of the growth rate to steady forcing,

which determines whether the unstable mode is promoted or suppressed. The

imaginary part determines the sensitivity of the frequency to steady forcing.

The sensitivities are oscillatory and the sensitivity patterns of the growth

rate and frequency are out of phase - a peak in the sensitivity for the growth rate

corresponds to a zero (a node) in the sensitivity for the frequency. Physically,

this means that, at a particular location, a steady force can have maximal

e�ect, either on the linear global mode growth rate, or on the linear global

mode frequency, but not on both.

The adjoint base ow temperature describes the sensitivity to heat input.

The ow is most sensitive to heat input just outside the helium jet, up to

around 1.5 jet diameters from the injection plane. In this region, �gure 3(c)

(bottom left) shows that adding heat just outside the jet makes the ow more

stable. Physically this is because heat addition reduces the density of the outer

uid. This agrees with the predictions of Srinivasan et al, [10] who used a

local stability analysis to predict that heating in the ambient uid near the jet

nozzle can eliminate absolute instability. By comparing the bottom-left frame

in �gure 3(c) with the streamlines in �gure 1(a), it is clear that the se nsitivity

contours approximately follow the streamlines. It appears therefore that the

change induced by the heat source has most e�ect when it is advected onto

the wavemaker region shown in �gure 1(e). Consequently, the sensitivities in

the regions outside the jet depend quite sensitively on the streamlines there

and therefore on the degree of co-ow. The result that is most contrary to

expectations is that heating the jet core around two diameters downstream has

a stabilizing e�ect. In order to verify this, we carried out a check and found

that heating the jet core two diameters downstream reduced thegrowth rate of

the linear global mode, as predicted by the sensitivity analysis.

Unsurprisingly, radial momentum forcing has little inuence, except in the

shear layer at the jet exit plane (�gure 3(b)). Axial momentum for cing has most
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inuence just outside the jet, around the wavemaker region. In this region, �gure

3(a) shows that adding a force in the positivex-direction decreases the global

mode frequency. The information in these �gures is most instructive when it is

combined in order to calculate the inuence of a physical object, two of which

we consider in the next section.

5. Passive control using an axisymmetric control ring

5.1. The e�ect of an adiabatic control ring

We now assume that the control force is provided by a thin ring at the

same temperature as the uid, which we call an adiabatic ring. The ring is at

(xc; r c), centred on the jet axis, and provides a force on the ow that is equal

and opposite to the drag force on the ring. In this linear stability analysis, the

steady base ow causes a steady drag force, and the growth of perturbations

causes an unsteady drag force. The ring is thin, so the non-dimensional steady

and unsteady components of the drag force can be modelled by those on a

cylinder:

�F(x; r ) = � � �� j �u j �u � 2(x � xc; r � r c); (12a)

f 0(x; r; t ) = f̂ (x; r )e�t ; (12b)

where f̂ (x; r ) = �
�

� �̂ j �u j �u + � �� j �u jû + � ��
�u � û
j �u j

�u
�

� 2(x � xc; r � r c): (12c)

The coe�cient � equalsdw CD , where CD is the drag coe�cient and dw is the

wire diameter non-dimensionalized by the jet diameter. We setCD = 1 :5,

based on numerical drag calculations.[26] We setdw = 0 :1, which corresponds

to a maximum local Reynolds number around 50, because this is below the

Reynolds number at which the ring causes its own self-excited oscillations.[26]

Therefore, the linearized drag force oscillates only at the frequency of the global

mode, � .

The changes in the eigenvalue due to the steady and unsteady components

of the drag force are�� �F = h�m + ; �F i and �� f 0 = hm̂ + ; f̂ i . These are summed to

obtain the total change in the eigenvalue,�� drag . Figure 4 shows the change in
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Figure 4: The predicted change (scaled by CD dw ) in the marginally unstable eigenvalue of a

helium jet due to the drag on a thin axisymmetric control ring , �� drag . The colours show the

real (left) and imaginary (right) parts of the total change i n the eigenvalue, �� drag (top), the

change due to the steady component of the drag force, �� �F (middle), and the change due to

the unsteady component of the drag force, �� f 0 (bottom). The contours show the absolute

value of �� for each row. The shading on all the plots is equal.
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the growth rate and frequency (scaled byCD dw ) as a function of the location

of the control ring. This shows where the control ring has most inuence. The

drag from the ring increases as the ow velocity at the ring increases, so the

ring has little e�ect where the base ow is slow, even if the eigenmode isquite

sensitive to momentum forcing there. This is why �gure 4 (sensitivity to a

control ring) has highest amplitudes in the jet region (0 < r < 0:5) despite the

fact that �gure 3 (sensitivity to steady forcing) has highest amplit udes outside

the jet region.

The ring has maximum inuence when placed at (xc; r c) = (1 :0; 0:43), at

which point it is stabilizing. Furthermore, it decreases the oscillation frequency

when placed at 0< x < 2:0 and increases the frequency when placed at 2:0 <

x < 3:2. It is interesting to note that the steady component of the drag force

inuences the eigenvalue around 3 times more than the unsteady component.

5.2. The e�ect of a heated control ring

We now consider the additional inuence of heat transfer from a hot ring.

Chandler [27] calculated the steady and unsteady components of the heat trans-

fer to be:

� T (x; r ) = c d�
w j �m j � (Tw � �T)� 2(x � xc; r � r c); (13a)

 0
T (x; r; t ) =  ̂ T (x; r )e�t ; (13b)

where  ̂ T (x; r ) = c d�
w j �m j �

�
(Tw � �T)�

m 0 � �m
j �m j2

� T 0
�

� 2(x � xc; r � r c):

(13c)

Tw is the non-dimensional wire temperature andc and � , which are functions

of the Nusselt and Reynolds numbers, are taken to bec = 58:3 and � = 0 :33.

[27] We consider a small increase in the non-dimensional ring temperature, Tw =

0:01. At an ambient temperature of 300 K, this corresponds to a dimensional

increase of 3 degrees. The changes in the eigenvalue due to the steady and

unsteady components of the heat transfer are�� �T = h�T + ; � T i and �� T 0 =

hT̂ + ;  ̂ T i . These are summed with the changes due to the drag (�� drag ) to
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Figure 5: The predicted change in the marginally unstable ei genvalue of a helium jet,

�� hotring , due to the drag and heat transfer from a thin hot ring with dw = 0 :1 and Tw = 0 :01.

The colours show the real (left) and imaginary (right) parts of the total change in the eigen-

value, �� hotring (top), the change due to the steady components of the drag and heat transfer,

�� �F + �� �T (middle), and the change due to the unsteady components of th e drag and heat

transfer, �� f 0 + �� T 0 (bottom). The contours show the absolute value of �� for each row. The

shading on all the plots is equal.

obtain the total change in the eigenvalue,�� hotring . Figure 5 shows these total

changes as a function of the location of the hot ring. When it is hot, the wire has

more inuence in the low speed regions outside the jet than when it is adiabatic,

as shown by the fact that �gure 5 is more similar to �gure 3(c) than � gure 4

is to �gure 3(a). This is because the heat transfer depends much less on the

local velocity than the drag force does (the exponent of velocity is� = 0 :33 in

equation (13a) but 2 in equation (12a)). The hot ring stabilizes the ow when

placed just outside the shear layer, around 0:0 < x < 2:0, because it reduces the

density there. It also has a strong e�ect when placed at a larger radius. This is

because the density reduction caused by the heat transfer is advected along the

streamlines to the jet. This advection depends strongly on the streamlines and

therefore on the degree of co-ow.
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6. Conclusions

In this paper, we have performed a structural sensitivity analysis and a

base ow sensitivity analysis of the stability of a low-density jet. We have

used direct numerical simulations of the direct and adjoint low Mach number

Navier{Stokes equations: in nonlinear form to �nd the steady baseow, and

in linear form to simulate the evolution of in�nitesimal perturbations. With an

Arnoldi algorithm, we have calculated the direct and adjoint global modes for

the structural sensitivity analysis and have combined this with a Lagrangian

approach for the base ow sensitivity analysis. We have produced maps of the

regions of the ow that are most sensitive to localized open loop steady forcing.

This forcing can take the form of a body force, a mass source, anda heat source.

We have found that the maximum of the structural sensitivity, whic h is

sometimes known as the wavemaker region, lies in the shear layer 2:66 jet di-

ameters downstream of the exit plane. This ow is locally absolutely unstable

from the exit plane to 5 jet diameters downstream and has maximum absolute

growth rate at the exit plane. Our global analysis shows that the most sensitive

location for open loop steady forcing is the area around the shear layer, around 2

jet diameters downstream of the exit plane. This forcing can change the growth

rate and frequency of the primary global mode. We �nd that the in uence of

steady forcing and heat injection is advected by the ow outside the jet. This

means that these results depend on the streamlines around the jet, which are

sensitive to the degree of co-ow around the jet.

We have used these maps to calculate the inuence of a ring placed in the

ow. When the ring is at the same temperature as the ow, it inuenc es the ow

only through its drag. In this case, the inuence of the steady component of the

drag force far outweighs the inuence of the unsteady component. Depending on

its axial position, the ring changes the growth rate or frequency of the primary

global mode, in a manner that should be possible to measure experimentally.

This result depends very little on the streamlines outside the jet because the

velocity is small there, so there is little drag. When the ring is hotter than the
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ow, it also inuences the ow through heat input. Again, the inuen ce of the

steady component far outweighs the inuence of the unsteady component. The

hot ring has most inuence when placed in the outer edge of the shear layer.

It is also inuential when placed outside the jet because the expanded gas is

advected towards the jet by the surrounding ow. In the slow-moving outer

ow, heat transfer from the ring is more inuential than drag from the ring

because heat transfer depends less strongly on the local velocitythan the drag

does. Again, this should be possible to measure experimentally, although when

the ring is placed outside the jet, its predicted inuence depends signi�cantly

on the streamlines, which may be di�cult to replicate in an experiment.

Appendix A. Grid convergence checks

In this appendix, we calculate the base ow and linear global stability on

several di�erent meshes in order to assess the reliability and convergence of the

results. Table A.1 compares the growth rate and frequency of theleast stable

direct and adjoint global mode, while varying the number of grid points, the

domain size, and the time-step used in the matrix-free time-stepping algorithm.

Meshes M1 and M3 have roughly the same spatial resolution and can be labelled

as low-resolution cases. Meshes M2 and M4 have roughly the same spatial

resolution and can be labelled as mid-resolution cases. Meshes M5 andM5a

have the same spatial resolution and can be labelled as high-resolution cases.

The di�erence between the mid- and high-resolution cases is small enough for

us to be con�dent that these results are well-converged.

In the absence of trucation errors, the adjoint eigenvalues wouldbe the com-

plex conjugate of the direct eigenvalues. In this study, however,the discretiza-

tion errors between the direct and adjoint algorithms are not the same because

a continuous-adjoint scheme is used. The adjoint eigenvalue must,therefore,

be checked to ensure that it is correct. The discrepancy betweenthe direct

and adjoint eigenvalues for the least stable mode is shown in table A.1.The

discrepancy between the two is never more than 0:25% and gets smaller with
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X max Rmax Sx Sr � t � dir Stdir � adj St�adj

Relative
discrepancy

(%)

M1 36.0 4.0 1025 127 0.005 0.0126 0.1623 0.0111 0.1620 0.24

M2 24.0 4.0 1025 181 0.005 0.0009 0.1646 0.0013 0.1647 0.07

M3 36.0 6.0 1025 181 0.005 0.0124 0.1628 0.0110 0.1626 0.18

M4 36.0 4.0 1449 181 0.005 -0.0011 0.1650 -0.0003 0.1646 0.25

M5 36.0 4.0 2049 255 0.005 -0.0048 0.1655 -0.0058 0.1656 0.11

M5a 36.0 4.0 2049 255 0.001 -0.0030 0.1658 -0.0033 0.1658 0.03

Table A.1: Domain size ( X max , Rmax ), number of grid points ( Sx, Sr ), and time-step

(� t ) used in the simulations to validate the global stability an alysis. The growth rate � , and

frequency (Strouhal number St) of the least stable direct and adjoint global modes are show n.

increasing grid-resolution and decreasing time-step. This is in agreement with

the �rst-order temporal accuracy of the time-stepping scheme[19]. We use mesh

M5 in this study.

Appendix B. Validation of sensitivity maps

In this section, we validate our sensitivity maps and check whether the pre-

dicted changes in the eigenvalue are the same as those found by numerical

simulation.

First, we validate the sensitivity to arbitrary base ow modi�cations . We

perturb each component of the base ow by a small amount� �q = " �q separately

and calculate the perturbed eigenvalue using our direct eigenvalue solver. We

compare the normalized change in the eigenvalue�� act = [ � (�q + " �q ) � � (�q )]="

to the predicted change in the eigenvalue�� pred = h�g + ; � �q i . The results are

shown in Table B.2 and show good agreement between the predicted and actual

eigenvalues. Note that for� �Z , we need to use the chain rule to take into account

the change in the density �eld caused by the change in mixture fraction, �� pred =

h � Z
+

� �K 2 �� 2; � �Z i .

Next, we validate the sensitivity to steady forcing. We consider thee�ect of
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� �mx � �mr � �Z

Predicted 0.0185 + 1.0451i 0.0116 + 0.0218i 0.1255 + 0.5085i

Actual 0.0180 + 1.0452i 0.0114 + 0.0219i 0.1270 + 0.5051i

Relative discrepancy (%) 0.05 0.70 0.72

Table B.2: Comparison between the predicted and actual chan ge in the eigenvalue due to an

arbitrary base ow modi�cation of the form � �q = " �q .

Steady force �� pred;SF �� pred;BF M �� act

�f x = � 0:01e� 100((x � 1:0) 2 +( r � 0:5) 2 ) -0.0193 - 0.0054i -0.0197-0.0052i -0.0203 - 0.0054i

Table B.3: Comparison between the predicted and actual chan ge in the eigenvalue due to

a steady force. We compare the actual change in the eigenvalu e (�� act ) with the change

predicted using the sensitivity to steady forcing ( �� pred;SF ) and the change predicted using

the sensitivity to base ow modi�cations with the forced bas e ow ( �� pred;BF M )

a momentum source term described by�f x = � 0:01e� 100((x � 1:0) 2 +( r � 0:5) 2 ) . The

change in the eigenvalue due to this steady forcing can be calculatedin three

ways. Firstly, we predict the change in the eigenvalue using the sensitivity to

steady forcing framework,�� pred;SF = h�m+
x ; � �f x i . Secondly, we add the forcing

term to the RHS of the NS equations and obtain a new steady base ow, �q+ � �q.

The change in the eigenvalue can then be predicted using the sensitivity to base

ow modi�cations, �� pred;BF M = h�g+ ; � �qi . Thirdly, the new eigenvalue can be

calculated using the direct eigenvalue solver on the new steady baseow. In

the linear approximation, all three methods should give the same answer. The

results are shown in Table B.3. The predicted change in the eigenvalueusing

the sensitivity to steady forcing and base ow modi�cations agree well with the

actual change in the eigenvalue calculated using the direct eigenvalue solver.

The small discrepancy is due to the use of the continuous-adjoint and �rst-

order accuracy of the time-stepping scheme used to calculate theeigenvalues.
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Figure C.6: The sensitivity of the marginally unstable eige nvalue of a helium jet at Re=470

to viscous e�ects. The colours show the sensitivity of the gr owth rate to viscous terms in

(a) the momentum equation (1b) r visc;m i � , and (b) the species conservation equation (1c)

r visc;Z � . The magnitudes can be compared directly to those in �gure 3.

Appendix C. Analysis of assumptions

In this study, we have made a number of simplifying assumptions to under-

stand the fundamental mechanisms that are involved in the control of global

instability in a low-density jet. The �rst assumption is that of uniform trans-

port properties. In order to con�rm the validity of this assumption for the ow

con�guration that we have studied, we calculate the sensitivity of the eigenvalue

to the viscous terms on the RHS of equations (1b-1c), given by

r visc;m i � =
�m+

i

S1Re

 
@2 �ui

@x2j
+

1
3

@2 �ui

@xj x i

!

+
m̂+

i

S1Re

 
@2û�

i

@x2j
+

1
3

@2û�
i

@xj x i

!

; (C.1a)

r visc;Z � =
�Z +

S1ReSc
@2 �Z
@x2j

+
1

S1ReSc

 
Ẑ +

��
+ �K 2p̂+

!
@2Ẑ �

@x2j
: (C.1b)

These quantify the importance of viscous e�ects in determining thelinear

growth rate and frequency of the global mode. The sensitivity maps are shown

in �gure C.6. We notice that the growth rate is more sensitive to the viscous

terms in the species equation than the viscous terms in the momentum equation.

The sensitivity is, however, at least one order of magnitude smaller than the

sensitivity to steady forcing, shown in �gure 3. We conclude, therefore, that for

the ow con�guration in this study, viscous e�ects do not have a lar ge e�ect

on the linear global stability analysis. For ows at lower Reynolds number, or

those dominated by buoyancy e�ects, we expect that viscous e�ects will be more

inuential.
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Figure C.7: (a) Streamlines of the base ow of an isothermal j et with S1 = 4 :0 at Re = 2000.

(b) The direct global mode and (c) the adjoint global mode, sh own as the real part of the

axial momentum. (d) The structural sensitivity, with a maxi mum of 3 � 105 .

Our second main assumption concerns the boundary conditions used in the

simulation. The ow con�guration that we have studied corresponds to a jet

exiting from a hole into a large open space. Upstream of the jet exit plane,

density variations would be negligible and the ow would be linearly stable. At

the jet exit plane, however, the ow is absolutely unstable. In this study, the jet

exit plane corresponds to the inlet to the computational domain, and we have

imposed homogeneous Dirichlet boundary conditions on all perturbations there,

similar to what has been done in previous studies [3, 18]. The numericaltools

used here did not allow us to model the ow upstream of the jet exit plane, or

to set other boundary conditions at the jet exit plane. Changing the boundary

condition at the inlet will have an e�ect on the global stability analysis. We

expect that the growth rate and frequency will change, and that the sensitivity

maps will shift upstream. Qualitatively, however, we expect that the sensitivity

maps will still exhibit the same features as those in this study.

Finally, it is worth discussing how the results of this study apply to ow s

at higher Reynolds numbers. We carried out a global stability analysisfor a
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marginally unstable low-density jet with S1 = 4 :0 at Re = 2000. The results are

shown in �gure C.7 and are qualitatively similar to those in �gure 1. The m ain

di�erence is that the convective non-normality is stronger at higher Reynolds

numbers. This is indicated by the greater spatial separation between the max-

ima of the direct and adjoint global modes. The strength of the non-normality

is also indicated by the maximum of the structural sensitivity. At Re = 2000,

the maximum of the structural sensitivity is almost two orders of magnitude

greater than at Re = 470. This means that the growth rate and frequency

of the global mode are much more sensitive to small changes in the feedback

mechanism driving the global mode, and also to small changes in the base ow.

Any small change to the ow such as that induced by a hot-wire can have a

large e�ect on the ow dynamics.
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