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Abstract

Many studies have shown that low-density jets exhibit self-excitedvaricose os-
cillations. We use direct numerical simulation of the low Mach number Navier{
Stokes equations to perform a linear global stability analysis of a helim jet at
the threshold of onset of these oscillations. We calculate the direcand adjoint
global modes and overlap these to obtain the structural sensitiviy. We nd that
the structural sensitivity has high magnitudes in the shear layer davnstream of
the entrance plane, where the ow is absolutely unstable. We use ta direct and
adjoint global modes to calculate the e ect of a control force on he growth rate
and frequency of the unstable mode. We produce maps of the regie of the
ow that are most sensitive to localized open loop steady forcing in the form
of a body force and a heat source. We nd that the most sensitive loation for
open loop steady forcing is the area around the shear layer, aroan?2 jet di-
ameters downstream of the exit plane, and that the in uence of seady forcing
and heat injection is advected by the ow outside the jet. We use these maps
to calculate the in uence of a ring placed in the ow. When the ring is at the
same temperature as the ow, it in uences the ow through its dra g. The ring
has most in uence when placed in the inner edge of the shear layer. Wén the
ring is heated, it also in uences the ow through the density reduction caused
by heat input. In this case, the ring has most in uence when placed inthe outer
edge of the shear layer. It is also in uential when placed outside thget because

the expanded gas is advected towards the jet. In both these cas, the in uence
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of the steady change to the base ow is signi cantly greater than the in uence
of an unsteady feedback force caused by the ring.
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1. Introduction

Many studies have shown that the stability of a jet discharging into an
ambient uid depends strongly on the jet's density. For example, spectra of
hot-wire velocity measurements in helium-air jets [1] and pressure masurements
in heated air jets [2] showed that low-density jets exhibit sharp discete peaks
in the measured spectra, while uniform-density jets exhibit weak boad peaks.
These sharp discrete peaks are caused by self-excited varicoseitiations in the
low-density jets, which arise because the initially steady jet is globallyunstable.
This global instability arises from a region of local absolute instability at the
jet exit plane. [3, 4, 5, 6] Theoretical studies have shown that globl instability
arises due to a hydrodynamic feedback mechanism in the region of latabsolute
instability. [7, 8]

Several experimental studies have examined the control of thesself-excited
oscillations. These studies have used loudspeakers for active fdmatk control
[9], and thin hot-wires [10] or co- ow [11] for passive control. The gal of
such control is to render the jet globally stable by perturbing the base ow
and disrupting the feedback mechanism that drives the oscillations. For this
goal, a global linear stability analysis around the steady base ow is tle most
appropriate tool, particularly in the form of a base ow sensitivity an alysis
[12, 13]. These analyses require the direct global mode and the adij global
mode to be calculated.

In this numerical study, we perform a base ow sensitivity analysis a1 a
low-density jet. We use the low Mach number formulation of the Navig{Stokes
(NS) equations [14]. This is well-adapted to studies of hydrodynamic istabil-
ity in low-density jets and ames because it permits density variations due to

temperature and composition but excludes acoustic waves. This sig cantly



reduces the computational e ort. We use the direct and adjoint gobal modes
to identify the e ect of regions of the ow in which the introduction o f a thin

axisymmetric control ring can change the frequency or growth rae of the global
instability. We also determine the in uence of heat transfer from the ring, which

has a particularly strong in uence on the instability of a low-density j et.

2. Flow con guration

We study the axisymmetric motion of a low-density jet in a cylindrical d o-
main that has radius Rnax and length X max . The jet uid enters the domain
at x = 0 and is aligned along the axis,r = 0. The uid in the domain is de-
scribed in terms of its velocity u = (uy; ur)T, density , and temperature T. A
di erence in chemical species between the jet uid and the surrounling uid is
described using the mixture fraction, Z, which has a value ofZ =1 for the jet
species andZ = 0 for the surrounding uid.

The uid motion is described by the axisymmetric low Mach number (LMN )

equations in nondimensional form:
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where = ru+(ru)’ %(r u)l is the non-isotropic component of the

rate-of-strain tensor. The ow variables are nondimensionalized ly the jet di-
ameter, the jet axial velocity at inlet, and the ambient density. The Reynolds
number, Re, is de ned in terms of the jet diameter, the jet axial velocity at

inlet, and the jet density. This de nition introduces a 1 =S; factor in front of



the viscous terms in equations (1). The nondimensional temperatte is de ned
asT = (T To)=(T1 To), where T is the dimensional temperature, Ty is
the maximum temperature, and Ty is the ambient temperature. The ratio of
the ambient density to the jet density de nes the density ratio parameter, Sy,

and the ratio of the maximum temperature to the ambient temperature de nes
the temperature ratio parameter, S,. The Prandtl number, Pr, and Schmidt

number, Sc, describe the ratio of the di usivity of temperature and mass, re-
spectively, to the di usivity of momentum. In this study, we wish to m odel
an isothermal helium jet exiting into atmospheric conditions. This ow has a
density ratio of S; = 7:0. For an isothermal ow, S, can be set to any value
other than 1:0. This is because, for an isothermal ow, it de nes a nominal
temperature to nondimensionalize the equations of motion. We se§, = 2:0 for
simplicity. In this fundamental study, we assume that the viscosity and thermal

di usivity are uniform throughout the ow, and set Pr = Sc = 1:0, in line

with Lesshaft et al [3]. The Richardson number,Ri, represents the ratio of the
bouyancy force to the inertial force. In this study, we are interested in the case
where buoyancy e ects are negligible and the dynamics of the low-dsity jet

are dominated by the inertial force, and therefore, we seRi = 0. Such a ow

con guration is typical of previous experimental studies [15, 11, 9 16]. Global
instability has also been observed in buoyant jets [17], but is not exanmed in

this study.

Equations (1a){(1e) can be expressed in terms of the momentumimn u,

temperature, T, and mixture fraction, Z, as

@ _ o
o N @

whereq (my; m;; Z; T)T is the state vector andN () is a nonlinear di eren-
tial operator representing the action of the equations on the stée vector. The
density, , is not included in the state vector because it can be derived fronT
and Z. We use a direct numerical simulation (DNS) code from previous stugks
[18, 19] to solve these equations. A fourth-order Runge-Kutta sheme is used to

march the discretized equations forward in time. The equations araliscretized



in space using a sixth-order compact nite di erence scheme. We us a grid
with 255 2049 points for a domain measuring & 36.0 jet diameters in the
radial and axial directions respectively. We assess numerical copvgence in
Appendix A, where we compare the growth rates and frequenciesfdhe global
modes produced on a range of computational domains and mesh @stions.

Along the lateral boundary, at r = Rpnax , We use a viscous traction free
boundary condition for the momentum and setT = 0 and Z = 0. At the
outlet boundary, at x = Xax, We use a convective boundary condition for
the momentum, temperature and mixture fraction. These bounday conditions
model ow into a semi-in nite domain in the downstream and radial dire ctions.
The pressure-projection scheme used in the code uses a discretsine transform
to set boundary conditions for the pressure at the inlet and outletboundaries.
For this study, we use a half-wave cosine transform, which setgp=dx = 0 at
the inlet and outlet boundaries. Along the lateral boundary, we setp = 0. At
the inlet to the domain, we impose velocity and mixture fraction pro le s formed
from Michalke's pro le number two [20], with a shear-layer thickness parameter
D=2  =14:0. This signi es that the momentum thickness of the shear layer is
14 times smaller than the jet radius. We also add a co- ow velocity of 26 of
the jet velocity around the jet to improve numerical stability.

This study is performed near the threshold of global instability, at which
point a linear global stability analysis is most relevant to the fully nonlinear case.
For this set of parameters and inlet pro le, we nd that this is at Re = 470. The
linear global mode has a frequency o6t = 0:165. In comparison, Hallberg &
Strykowski [15] (Figure 5) report the onset of global instability in a helium jet of
similar shear-layer thickness at approximately 550 Re 750 and nd that the
nonlinear global mode has a frequency of:@8 St  0:22. We attribute the
di erence between our linear global stability analysis and their expeimental
observations to the dierences in the jet velocity and density pro les. Both
of these have been found to have a signi cant e ect on the onset babsolute

instability in low-density jets. [5, 21]



(a) Streamlines of base flow

Figure 1: (a) Streamlines of the base ow and (b) the local abs olute growth rate of an
isothermal helium jet at Re = 470. (c) The direct global mode a nd (d) the adjoint global
mode, shown as the real part of the axial momentum. (e) The str uctural sensitivity, with a

maximum of 4 103.

3. Global stability analysis

We obtain a steady axisymmetric base ow,( (x;r), such that N@ ) = 0,
using selective frequency damping (SFD) [22]. The streamlines of thisase ow
are shown in gure 1(a). The entrainment of the ambient uid into th e jet is
signi cant and we will show later in the paper that it can have a strong e ect
on the stability of the ow.

The evolution of small axisymmetric perturbations g° around this steady
base ow is governed by the linearized LMN equations. We decomposthe

axisymmetric perturbations into Fourier modes in time:
qx;r;t) = @(x;r)e' +complex conjugate; 3)

where +i! is the eigenvalue. This contains the growth rate, , and

frequency, ! , of the corresponding two-dimensional eigenmodef (x;r), that



would grow or decay on top of the steady base ow. The direct globhmodes

are obtained by solving the matrix eigenvalue problem

¢ =14; (4)

where L is a discretized operator that describes the linearized LMN equatios.

We also obtain the adjoint global modes, which are solutions of
4" =L"8"; (5)

where L™ is the discretized version of the continuous-adjoint LMN equations
We solve these eigenvalue problems using the code developed by Cléer et
al [19]. The code uses matrix-free time-stepping and the implicitly restated
Arnoldi method to nd the most unstable global modes. For the direct global
modes, we use a convective boundary condition at the outlet bouraty and set
m, = M, = T = 2 =0 on the lateral and inlet boundaries. For the adjoint
global modes, we semt = m* = T+ = 2* =0 on all boundaries. The half-
wave cosine transform used in the code setdp=dx = dp* =dx = 0 at the inlet
and outlet boundaries. We nd that this gives better agreement beween the
direct and continuous-adjoint eigenvalues than that observed byChandler et al
[19], who used a quarter-wave cosine transform to sedp=dx = p* = 0 at the
inlet and p = dp* =dx = 0 at the outlet.

Figure 2 shows the eigenvalues corresponding to the 25 least stalbieodes.
At this Reynolds number, we nd one mode that is marginally unstable, and
a branch of low-frequency stable modes. These stable modes cespond to
free-stream vortical modes - similar to those observed in a uniforrdensity jet
[23].

The direct global mode, ¢(x;r), corresponding to the marginally unstable
mode is shown in gure 1(c). Its corresponding adjoint global moded ™ (x;r), is
shown in gure 1(d) and the structural sensitivity, de ned here a s the Frobenius
norm of the tensor §; = mi(mj*) , is in gure 1(e).

The absolute growth rate decays monotonically from the entranceplane and

the ow is absolutely unstable for 0 x < 5:0. The structural sensitivity has



0.05

—-0.05¢

x
XX o
x

x XX

c -0.1F
-0.15+

-0.2¢

029 0 05 1 15
(O]

Figure 2: Eigenvalue spectrum for axisymmetric modes for th e base ow shown in gure 1(a).

The 25 least stable modes are shown.

high magnitudes in the shear layer in this region. The structural semsitivity

identi es the region of the ow that is most sensitive to internal fee dback mech-
anisms - where the direct global mode optimally excites itself. We followearlier
studies [24] and refer to this region as the wavemaker of the ow. Tis region
does not, however, necessarily correspond to the region whera axternal con-
trol force has most in uence on the growth rate and frequency 6 the unstable
mode. This is because a control force also changes the base owdathis change

in the base ow is not accounted for in the structural sensitivity.

4. Sensitivity to a control force

We now consider the e ect of a small control force on the marginallyunstable
eigenvalue. We model the control force by adding source terms tthe right-hand
side of equation (2):

@ _ N+ F: 6)

@t
where F (%f;0; 1) contains the source terms added to the right-hand
side of the continuity, momentum, species and energy equations spectively.
The source term in the species equation has been set to zero. Thanables %

f and 1 are the non-dimensional rates of addition per unit volume of mass,



momentum, and thermal energy into the ow. In this linear stability f ramework,
the control force has a steady componentF, that acts on the base ow,q , and
a linearized perturbation, f° that acts on the linear perturbations, q°% The
e ects of these two components are modelled separately followinghe approach
of Marquet et al [25].

The eigenvalue of the global mode, , is a function of the base ow elds,q ,
and these are, in turn, functions of the steady components of th forcing terms,
F. The eect of F on is calculated by formulating a constrained Lagrangian
problem

L= hg";N@)+Fi ha"; ¢ Lgi )
and calculating r ¢ , the functional derivative of  with respect to (w.r.t) F.
This is labelled the sensitivity of the eigenvalue to steady forcing. Thenonlinear
and linearized Navier{Stokes equations act as constraints in this poblem. The
notation ha; bi denotes an inner product over the computational domain volume
v, z

ha; bi = ab dv; (8)

\%
where a” denotes the Hermitian (.e. complex conjugate transpose) of. The

<|r

Lagrange multipliers,g * and ¢*, are the adjoint base ow and adjoint global
mode elds respectively.

The sensitivity to steady forcing is equal to the functional derivative of L
w.r.t F when all the constraints are satised. To nd this, we rst set the
functional derivatives of L w.r.t all other variables to zero. The derivative
w.r.t ¢ leads to a set of equations that de nes the eigenvalue problem forhe
adjoint global mode, ¢t + L*4* = 0. The derivative w.rt leads to the
normalization condition b * ;i + W2+ ; Zi + Hf*; Ti = 1. The derivative w.r.t
g leads to a set of equations for the adjoint base ow elds,L*q* =g *. The
derivative w.r.t F then shows that the sensitivity of the eigenvalue to steady
forcing is obtained from the relevant adjoint base ow eld. Similarly, the
sensitivity of the eigenvalue to unsteady harmonic forcing is obtaind from the

relevant adjoint global mode eld.



For incompressible ow, the adjoint base ow operator L* is equivalent
to the continuous-adjoint operator L*. [12] For our formulation of the LMN

equations, however, these two operators are dierent. The adjint base ow

equations can be written in full as

@n _
! ax 0 ! (9a)
m @n/ @n; @ = @mi"+}@mf + T =——+Z2"—=f"
@x @x @x SiRe @f 3@x@x @x @x
(9b)
a’ 1 @z v
m; @x SlReSC @% + KZ - Z (9C)
a- 1 @t .
M @x SiRePr @R + Ky s (9d)
mim; @n;’ m; @m 1 @mj+ - o
Z @x 'SRe?Z @f @ 3@x@x % (%)

whereK; (S 1) (S1 1)Z+1 andK; (S1 1) (S, 1T +1 are
constant scalar elds. The complex elds that constitute g * o, f*", 7,

7)T and % on the RHS need to be calculated rst from the base ow and the
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direct and adjoint global modes as
| |
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Based on previous studies on incompressible and compressible ows! can be
used to describe the sensitivity of the eigenvalue to arbitrary baseow modi ca-

tions. Using the chain rule, we can express* in terms of primitive variables to
derive the sensitivity of the eigenvalue to modi cations of the base ow velocity

and density pro les

ro = f (11a)
1 . 1 ¥
2K 5 z 2K 4 T

r =9%

(11b)

Once this has been calculated, the adjoint base ow equations candsolved.
To solve the adjoint base ow equations, we add time-derivative tems to
the LHS of equations (9b){(9d) and use a fourth-order Runge-Kutta scheme
to march the axisymmetric form of the equations forward in time until the
I2-norm of the dierence between the adjoint base ow state vectas at two

succesive timsteps is less than 1.
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(a) Sensitivity to a steady axial force

Figure 3: The sensitivity of the marginally unstable eigenv alue of a helium jet at Re=470

to steady forcing, r o . The colours show the sensitivity of the growth rate, r  (left), and
frequency, r ! (right) to a (a) steady axial body force, Fyx (b) steady radial body force, Fy,
and (c) steady heat input, 1. The contour lines show the absolute value of r  for each row.

12



Figure 3 shows the adjoint base ow elds for the marginally unstable global
mode of the isothermal helium jet at Re = 470. The real part of the adjoint
base ow elds determines the sensitivity of the growth rate to steady forcing,
which determines whether the unstable mode is promoted or suppssed. The
imaginary part determines the sensitivity of the frequency to stealy forcing.

The sensitivities are oscillatory and the sensitivity patterns of the goowth
rate and frequency are out of phase - a peak in the sensitivity fortie growth rate
corresponds to a zero (a node) in the sensitivity for the frequenc Physically,
this means that, at a particular location, a steady force can have maximal
e ect, either on the linear global mode growth rate, or on the linear global
mode frequency, but not on both.

The adjoint base ow temperature describes the sensitivity to hed input.
The ow is most sensitive to heat input just outside the helium jet, up to
around 1.5 jet diameters from the injection plane. In this region, gure 3(c)
(bottom left) shows that adding heat just outside the jet makes the ow more
stable. Physically this is because heat addition reduces the densityfdhe outer
uid. This agrees with the predictions of Srinivasan et al, [10] who used a
local stability analysis to predict that heating in the ambient uid near the jet
nozzle can eliminate absolute instability. By comparing the bottom-let frame
in gure 3(c) with the streamlines in gure 1(a), it is clear that the se nsitivity
contours approximately follow the streamlines. It appears therefre that the
change induced by the heat source has most e ect when it is adveetl onto
the wavemaker region shown in gure 1(e). Consequently, the sesitivities in
the regions outside the jet depend quite sensitively on the streamlies there
and therefore on the degree of co- ow. The result that is most catrary to
expectations is that heating the jet core around two diameters danstream has
a stabilizing e ect. In order to verify this, we carried out a check and found
that heating the jet core two diameters downstream reduced thegrowth rate of
the linear global mode, as predicted by the sensitivity analysis.

Unsurprisingly, radial momentum forcing has little in uence, except in the

shear layer at the jet exit plane ( gure 3(b)). Axial momentum for cing has most

13



in uence just outside the jet, around the wavemaker region. In this region, gure
3(a) shows that adding a force in the positivex-direction decreases the global
mode frequency. The information in these gures is most instructive when it is
combined in order to calculate the in uence of a physical object, two of which

we consider in the next section.

5. Passive control using an axisymmetric control ring

5.1. The e ect of an adiabatic control ring

We now assume that the control force is provided by a thin ring at the
same temperature as the uid, which we call an adiabatic ring. The ring is at
(Xc;re), centred on the jet axis, and provides a force on the ow that is eual
and opposite to the drag force on the ring. In this linear stability analysis, the
steady base ow causes a steady drag force, and the growth ofepturbations
causes an unsteady drag force. The ring is thin, so the non-dimeimal steady

and unsteady components of the drag force can be modelled by tee on a

cylinder:
FOar)= it 2(x Xxgro ro); (12a)
fox;rt)= fx;r)et ; (12b)
where f(x;r) = N+ e+ %u 2(x  Xer o re): (12¢)

The coe cient equalsd, Cp, where Cp is the drag coe cient and d,, is the
wire diameter non-dimensionalized by the jet diameter. We setCp = 1:5,
based on numerical drag calculations.[26] We sedl, = 0:1, which corresponds
to a maximum local Reynolds number around 50, because this is belowhe
Reynolds number at which the ring causes its own self-excited oscillains.[26]
Therefore, the linearized drag force oscillates only at the frequesy of the global
mode,

The changes in the eigenvalue due to the steady and unsteady corapents
of the drag forceare - =m *;Fiand o= Hhh"* -fi. These are summed to

obtain the total change in the eigenvalue, grag - Figure 4 shows the change in

14



Total change in growth rate, o drag ©104

Total change in frequency, dw drag «10

Change due to steady components

Figure 4: The predicted change (scaled by Cp dw) in the marginally unstable eigenvalue of a
helium jet due to the drag on a thin axisymmetric control ring ,  grag . The colours show the
real (left) and imaginary (right) parts of the total change i n the eigenvalue,  grag (top), the
change due to the steady component of the drag force, ¢ (middle), and the change due to
the unsteady component of the drag force, so (bottom). The contours show the absolute

value of for each row. The shading on all the plots is equal.
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the growth rate and frequency (scaled byCp dy,) as a function of the location
of the control ring. This shows where the control ring has most in uence. The
drag from the ring increases as the ow velocity at the ring increass, so the
ring has little e ect where the base ow is slow, even if the eigenmode igjuite
sensitive to momentum forcing there. This is why gure 4 (sensitivity to a
control ring) has highest amplitudes in the jet region (0O<r < 0:5) despite the
fact that gure 3 (sensitivity to steady forcing) has highest amplit udes outside
the jet region.

The ring has maximum in uence when placed at Kc;rc) = (1:0;0:43), at
which point it is stabilizing. Furthermore, it decreases the oscillation frequency
when placed at 0< x < 2:0 and increases the frequency when placed at@<
X < 3:2. It is interesting to note that the steady component of the drag force

in uences the eigenvalue around 3 times more than the unsteady ¢oponent.

5.2. The e ect of a heated control ring

We now consider the additional in uence of heat transfer from a ha ring.
Chandler [27] calculated the steady and unsteady components ohe heat trans-

fer to be:

T(r)y=cd,mj (Tw T)2(X Xer  re); (13a)

Sx;rt)= “r(xr)et; (13b)
0
where “r(¢r)=c dnj (Te T) m;n T; O 2(x  xgr ro):

(13c¢)

Ty is the non-dimensional wire temperature andc and , which are functions
of the Nusselt and Reynolds numbers, are taken to be =58:3 and =0:33.
[27] We consider a small increase in the non-dimensional ring tempetare, T,, =
0:01. At an ambient temperature of 300 K, this corresponds to a dimesional
increase of 3 degrees. The changes in the eigenvalue due to the astg and
unsteady components of the heat transfer are = hI'*; i and 1o =

Hf*; “ri. These are summed with the changes due to the drag (grag) to

16



Figure 5: The predicted change in the marginally unstable ei genvalue of a helium jet,
hotring » due to the drag and heat transfer from a thin hot ring with dw =0:1and Ty = 0:01.
The colours show the real (left) and imaginary (right) parts of the total change in the eigen-
value, noting (top), the change due to the steady components of the drag and heat transfer,
¢ + 1 (middle), and the change due to the unsteady components of th e drag and heat
transfer, jo+ 1o (bottom). The contours show the absolute value of for each row. The

shading on all the plots is equal.

obtain the total change in the eigenvalue, nowing - Figure 5 shows these total
changes as a function of the location of the hot ring. When it is hot, he wire has
more in uence in the low speed regions outside the jet than when it is diabatic,
as shown by the fact that gure 5 is more similar to gure 3(c) than gure 4
is to gure 3(a). This is because the heat transfer depends much ks on the
local velocity than the drag force does (the exponent of velocity is = 0:33 in
equation (13a) but 2 in equation (12a)). The hot ring stabilizes the ow when
placed just outside the shear layer, around @ < x < 2:0, because it reduces the
density there. It also has a strong e ect when placed at a larger rdius. This is
because the density reduction caused by the heat transfer is aéeted along the
streamlines to the jet. This advection depends strongly on the steamlines and

therefore on the degree of co- ow.
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6. Conclusions

In this paper, we have performed a structural sensitivity analysisand a
base ow sensitivity analysis of the stability of a low-density jet. We have
used direct numerical simulations of the direct and adjoint low Mach rumber
Navier{Stokes equations: in nonlinear form to nd the steady base ow, and
in linear form to simulate the evolution of in nitesimal perturbations. With an
Arnoldi algorithm, we have calculated the direct and adjoint global modes for
the structural sensitivity analysis and have combined this with a Lagrangian
approach for the base ow sensitivity analysis. We have produced raps of the
regions of the ow that are most sensitive to localized open loop stedy forcing.
This forcing can take the form of a body force, a mass source, amalheat source.

We have found that the maximum of the structural sensitivity, which is
sometimes known as the wavemaker region, lies in the shear layer6b jet di-
ameters downstream of the exit plane. This ow is locally absolutely urstable
from the exit plane to 5 jet diameters downstream and has maximum &solute
growth rate at the exit plane. Our global analysis shows that the mest sensitive
location for open loop steady forcing is the area around the shearyer, around 2
jet diameters downstream of the exit plane. This forcing can chang the growth
rate and frequency of the primary global mode. We nd that the in uence of
steady forcing and heat injection is advected by the ow outside the jet. This
means that these results depend on the streamlines around the tjewhich are
sensitive to the degree of co- ow around the jet.

We have used these maps to calculate the in uence of a ring placed inhe
ow. When the ring is at the same temperature as the ow, itin uenc es the ow
only through its drag. In this case, the in uence of the steady conponent of the
drag force far outweighs the in uence of the unsteady componemn Depending on
its axial position, the ring changes the growth rate or frequency 6 the primary
global mode, in a manner that should be possible to measure experimglly.
This result depends very little on the streamlines outside the jet beause the

velocity is small there, so there is little drag. When the ring is hotter than the
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ow, it also in uences the ow through heat input. Again, the inuen ce of the
steady component far outweighs the in uence of the unsteady cmponent. The
hot ring has most in uence when placed in the outer edge of the shaalayer.
It is also in uential when placed outside the jet because the expandd gas is
advected towards the jet by the surrounding ow. In the slow-moving outer
ow, heat transfer from the ring is more in uential than drag from the ring
because heat transfer depends less strongly on the local velocitilan the drag
does. Again, this should be possible to measure experimentally, altugh when
the ring is placed outside the jet, its predicted in uence depends sigi cantly

on the streamlines, which may be di cult to replicate in an experiment.

Appendix A. Grid convergence checks

In this appendix, we calculate the base ow and linear global stability on
several di erent meshes in order to assess the reliability and convgence of the
results. Table A.1 compares the growth rate and frequency of thdeast stable
direct and adjoint global mode, while varying the number of grid points, the
domain size, and the time-step used in the matrix-free time-steppig algorithm.
Meshes M1 and M3 have roughly the same spatial resolution and caneblabelled
as low-resolution cases. Meshes M2 and M4 have roughly the sameasial
resolution and can be labelled as mid-resolution cases. Meshes M5 aiMba
have the same spatial resolution and can be labelled as high-resolutiocases.
The di erence between the mid- and high-resolution cases is small eugh for
us to be con dent that these results are well-converged.

In the absence of trucation errors, the adjoint eigenvalues woulde the com-
plex conjugate of the direct eigenvalues. In this study, howeverthe discretiza-
tion errors between the direct and adjoint algorithms are not the same because
a continuous-adjoint scheme is used. The adjoint eigenvalue mustherefore,
be checked to ensure that it is correct. The discrepancy betweethe direct
and adjoint eigenvalues for the least stable mode is shown in table A.1The

discrepancy between the two is never more than :@5% and gets smaller with
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Relative
discrepancy

X max Rmax Sx Sr t dir Stdir adj Stadj (%)

M1 36.0 4.0 | 1025 127 | 0.005| 0.0126 | 0.1623| 0.0111 | 0.1620 0.24
M2 24.0 40 | 1025| 181 | 0.005| 0.0009 | 0.1646| 0.0013 | 0.1647 0.07
M3 36.0 6.0 | 1025| 181 | 0.005| 0.0124 | 0.1628| 0.0110 | 0.1626 0.18
M4 36.0 4.0 | 1449| 181 | 0.005| -0.0011| 0.1650| -0.0003| 0.1646 0.25
M5 36.0 4.0 | 2049 | 255 | 0.005| -0.0048| 0.1655| -0.0058| 0.1656 0.11
M5a | 36.0 4.0 | 2049 | 255 | 0.001| -0.0030| 0.1658| -0.0033| 0.1658 0.03

Table A.1: Domain size ( Xmax , Rmax ), number of grid points ( Sx, Sr ), and time-step
(' t) used in the simulations to validate the global stability an  alysis. The growth rate , and

frequency (Strouhal number St) of the least stable direct and adjoint global modes are show n.

increasing grid-resolution and decreasing time-step. This is in agreeent with
the rst-order temporal accuracy of the time-stepping scheme[19]. We use mesh

M5 in this study.

Appendix B. Validation of sensitivity maps

In this section, we validate our sensitivity maps and check whether he pre-
dicted changes in the eigenvalue are the same as those found by nantcal
simulation.

First, we validate the sensitivity to arbitrary base ow modi cations . We
perturb each component of the base ow by a small amountq = 'y separately
and calculate the perturbed eigenvalue using our direct eigenvalueosver. We
compare the normalized change in the eigenvalue ¢ =[ @ + '9) a)]="
to the predicted change in the eigenvalue e = I3 ;g i. The results are
shown in Table B.2 and show good agreement between the predictedd actual
eigenvalues. Note that for Z, we need to use the chain rule to take into account
the change in the density eld caused by the change in mixture fracton, preq =
hz" Ksa 2 zi.

Next, we validate the sensitivity to steady forcing. We consider thee ect of
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My my Z
Predicted 0.0185 + 1.0451i| 0.0116 + 0.0218i| 0.1255 + 0.5085i
Actual 0.0180 + 1.0452i| 0.0114 + 0.0219i| 0.1270 + 0.5051.i

Relative discrepancy (%) 0.05 0.70 0.72

Table B.2: Comparison between the predicted and actual chan ge in the eigenvalue due to an

:‘q_

arbitrary base ow modi cation of the form q

Steady force pred:SF pred;BFM

act

0:01e 100((x 1:0)%+(r 0:5)?)

-0.0193 - 0.0054i| -0.0197-0.0052i

fy =

Table B.3: Comparison between the predicted and actual chan ge in the eigenvalue due to

a steady force. We compare the actual change in the eigenvalu e ( act ) with the change

predicted using the sensitivity to steady forcing ( pred:sF ) and the change predicted using

the sensitivity to base ow modi cations with the forced bas e ow ( pred:eFm )

a momentum source term described byfy = 0:0le 100(Cx LO*+(r 05%) Tpe
change in the eigenvalue due to this steady forcing can be calculateid three
ways. Firstly, we predict the change in the eigenvalue using the seiitsvity to
steady forcing framework, preq;se = hmy; fyi. Secondly, we add the forcing
term to the RHS of the NS equations and obtain a new steady base w, q+ q@.
The change in the eigenvalue can then be predicted using the sensitly to base
ow modi cations, pred:;8FM = QT gi. Thirdly, the new eigenvalue can be
calculated using the direct eigenvalue solver on the new steady basew. In
the linear approximation, all three methods should give the same anger. The
results are shown in Table B.3. The predicted change in the eigenvaluasing
the sensitivity to steady forcing and base ow modi cations agree well with the
actual change in the eigenvalue calculated using the direct eigenvadusolver.
The small discrepancy is due to the use of the continuous-adjoint ad rst-

order accuracy of the time-stepping scheme used to calculate theigenvalues.
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Figure C.6: The sensitivity of the marginally unstable eige nvalue of a helium jet at Re=470
to viscous e ects. The colours show the sensitivity of the gr owth rate to viscous terms in
(a) the momentum equation (1b) r yise;m ; , and (b) the species conservation equation (1c)

I viscz - The magnitudes can be compared directly to those in gure 3.

Appendix C. Analysis of assumptions

In this study, we have made a number of simplifying assumptions to uder-
stand the fundamental mechanisms that are involved in the contrd of global
instability in a low-density jet. The rst assumption is that of uniform trans-
port properties. In order to con rm the validity of this assumption for the ow
con guration that we have studied, we calculate the sensitivity of the eigenvalue

to the viscous terms on the RHS of equations (1b-1c), given by
! !
m’ @y 1@y mr @0, 1 @Ao,
I visecm; = + + + - ;
SiRe @ﬁ 3 @xxi SiRe @ﬁ ' 3@xxi

Z @Z+ = 2—++ Kop* %:

(C.1a)

Fvsez = S;ReSc @%  S;ReSc

(C.1b)

These quantify the importance of viscous e ects in determining thelinear
growth rate and frequency of the global mode. The sensitivity mag are shown
in gure C.6. We notice that the growth rate is more sensitive to the viscous
terms in the species equation than the viscous terms in the momenta equation.
The sensitivity is, however, at least one order of magnitude smaller han the
sensitivity to steady forcing, shown in gure 3. We conclude, therdore, that for
the ow con guration in this study, viscous e ects do not have a lar ge e ect
on the linear global stability analysis. For ows at lower Reynolds number, or
those dominated by buoyancy e ects, we expect that viscous e ets will be more

in uential.
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Figure C.7: (a) Streamlines of the base ow of an isothermal j et with S; =4:0 at Re = 2000.
(b) The direct global mode and (c) the adjoint global mode, sh own as the real part of the

axial momentum. (d) The structural sensitivity, with a maxi mum of 3 10°.

Our second main assumption concerns the boundary conditions uddn the
simulation. The ow con guration that we have studied corresponds to a jet
exiting from a hole into a large open space. Upstream of the jet exit [ane,
density variations would be negligible and the ow would be linearly stable At
the jet exit plane, however, the ow is absolutely unstable. In this study, the jet
exit plane corresponds to the inlet to the computational domain, ard we have
imposed homogeneous Dirichlet boundary conditions on all perturbions there,
similar to what has been done in previous studies [3, 18]. The numericabols
used here did not allow us to model the ow upstream of the jet exit dane, or
to set other boundary conditions at the jet exit plane. Changing the boundary
condition at the inlet will have an e ect on the global stability analysis. We
expect that the growth rate and frequency will change, and thatthe sensitivity
maps will shift upstream. Qualitatively, however, we expect that the sensitivity
maps will still exhibit the same features as those in this study.

Finally, it is worth discussing how the results of this study apply to ow s

at higher Reynolds numbers. We carried out a global stability analysisfor a
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marginally unstable low-density jet with S; = 4:0 at Re = 2000. The results are
shown in gure C.7 and are qualitatively similar to those in gure 1. The m ain

di erence is that the convective non-normality is stronger at higher Reynolds
numbers. This is indicated by the greater spatial separation betwen the max-
ima of the direct and adjoint global modes. The strength of the nornormality

is also indicated by the maximum of the structural sensitivity. At Re = 2000,
the maximum of the structural sensitivity is almost two orders of magnitude
greater than at Re = 470. This means that the growth rate and frequency
of the global mode are much more sensitive to small changes in the ddback
mechanism driving the global mode, and also to small changes in the lse ow.

Any small change to the ow such as that induced by a hot-wire can tave a

large e ect on the ow dynamics.
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