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Abstract
We create and describe an inhomogeneous Helmholtz equation solver, helmholtz-x, written in an open-source framework. The
mesh is generated with Gmsh and the solver uses DOLFINx and UFL from FEniCSx. The performance, validity, stability and
extensibility of the solver are demonstrated through several examples of thermoacoustic instability, from the one-dimensional
Rijke tube to the three-dimensional MICCA combustor. The implementation of Bloch-type boundary conditions is explained
and tested. The adjoint capability of the solver is also shown, and used to obtain derivatives of the eigenvalue with respect to
shape parameters. This is exploited to find shape changes that reduce the thermoacoustic growth rate.

Keywords Helmholtz equation · Finite element method · Open-source software · Adjoint · Parallel computing

1 Introduction

Thermoacoustic oscillations in rockets and gas turbines occur
when the fluctuating heat release rate occurs sufficiently in
phase with the acoustic pressure that the growth of acoustic
energy exceeeds the damping [1]. These oscillations dam-
age engines and must be eliminated, preferably at the design
stage.

Low-order network models such as LOTAN [2], OSCI-
LOS1 [3] and taX2 [4] are the simplest tools for modelling
thermoacoustic instability. In these models, the acoustics are
modelled within connected modules with simple geometries
and the temperature is assumed uniformwithin eachmodule.
The heat release rate from the flame is typically modelled as
a compact source of heat, which is a function of the acoustic
velocity or pressure. Low-order network models can only

1 https://github.com/MorgansLab/OSCILOS_long.
2 https://gitlab.lrz.de/tfd/tax.
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model simple geometries but can account for mean flow
effects such as entropy waves.

For complicated geometries and spatially-varying temper-
ature fields, finite elementmethod (FEM) can be used to solve
the non-homogenous Helmholtz equation. These Helmholtz
solvers assume that the mean flow Mach number is small
and therefore cannot model entropy waves. For example,
the package PyHoltz3 is a Python-based FEM solver that
calculates thermoacoustic eigenvalues and corresponding
eigenvectors. It includes Bloch boundary conditions [5, 6],
uncertainty quantification [7] and non-iterative solvers [8]. It
has been re-written in Julia under the nameWavesAndEigen-
values4. These packages implement nonlinear eigenproblem
solvers with subspace [9] and iterative algorithms such as
Banach’ fixed point iteration andHouseholder’smethod [10].
These packages also have some adjoint capability [11].

For resolution of the reacting flow within a combustion
system, Large Eddy Simulation (LES) can be used, but at
high computation cost. This provides high fidelity informa-
tion about the flow, which can be used to extract acoustics
through, for example, dynamic mode decomposition [12].
LES is used to investigate self-excited thermoacoustic insta-
bilities for laboratory [13] and industrial [14] combustion
systems. However, LES is too expensive for extensive para-

3 https://bitbucket.org/pyholtzdevelopers/public/src/master/.
4 https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.
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metric studies and its results do not show how to control
thermoacoustic instabilities [15].

The stability of thermoacoustic systems is highly sensitive
to small changes in many parameters, particularly those that
affect the phase between the heat release rate and the acous-
tic pressure such as the flame configuration [16]. Knowing
the thermoacoustic response of the system to these changes
would help the design process. Adjoint methods achieve this
at a low computation cost. This was first presented in [17] in
which stabilizing mechanisms for a hot wire Rijke tube were
quickly determined. Adjoints were then applied with a wave-
based approach [18] and aHelmholtz solver [19] to determine
thermoacoustic sensitivities [20]. Adjoint methods were then
used in low-order network models to stabilize longitudinal
[21] and annular [22] combustors by changing their shapes.
For more complex geometries, adjoint Helmholtz solvers are
required, which increases the computational cost. For these
geometries, the shapes need to be parametrized with, for
example, B-Splines [23] and Non-Uniform B-Splines [24],
or more descriptive CAD tools for industrial geometries.
Adjoint methods then provide the sensitivity of the thermoa-
coustic eigenvalues to changes in the shape parameters.

Free-form deformation (FFD) places control points within
the volume that is to be deformed and then shifts their posi-
tions. The geometry deforms as it moves with the control
points [25]. FFD has many design applications, such as aero-
dynamics [26, 27] and turbomachinery [28–30] but it has not
yet been used in thermoacoustics.

In this paper, we present an open-source parallelized
adjoint Helmholtz solver, helmholtz-x, which combines
several open source packages to model small amplitude ther-
moacoustic oscillations in complex geometries. In Sect. 2,
we derive the numerical system for direct and adjoint frame-
works, and explain the implementation of various boundary
conditions. In Sect. 3 we verify the results of the solver
and show its parallel computation capability. In Sect. 4 we
demonstrate adjoint-based shape optimization with FFD.

2 helmholtz-x

In this section, we present the derivation and FEM dis-
cretization of the thermoacoustic Helmholtz equation and
corresponding boundary conditions. We include code and
show how to calculate eigenmodes. helmholtz-x uses the
open-sourceFEMframework, FEniCSxandnumerical toolk-
its PETSc and SLEPc.

2.1 FEniCSx, PETSc and SLEPc

The FEniCSx project [31] offers a framework for solving
PDEs using FEM. It has efficient matrix assembly kernels for
reducing the solution time. The software also offers a scalable

framework for computationally demanding problems with
MPI [32] parallelization. It also has a Python interface named
mpi4py [33].

We define weak forms of the PDEs through a high-level
Python interface with the Unified Form Language (UFL)
package [34]. UFL weak forms are used to define the weak
forms, which are then used by the FEniCSx Form Com-
piler, FFCx [35], which generates the low level C codes for
local tensors to be globally assembled by DOLFINx. Subse-
quently, the UFL compiled forms can be assembled as sparse
matrices. Matrices can be formatted with the Portable Exten-
sible Toolkit for Scientific Computation (PETSc) [36] so as
to be compatible with MPI and to use a Python binding,
petsc4py [37]. It also uses the open-source scalable and flex-
ible toolkit for the solution of eigenvalue problems (SLEPc)
[38], which solves eigenvalue problems of PETSc matrices,
returning eigenvalues and their corresponding PETSc eigen-
vectors. SLEPc also offers Python binding through slepc4py
[37]. FEniCSx, PETSc and SLEPc all support complex num-
bers.

2.2 Thermoacoustic Helmholtz equation

The derivation of the direct and adjoint thermoacoustic
Helmholtz equations follows the methodology in [39]. The
direct Helmholtz equation and momentum equation in a
domain � ⊂ R

3 are

∇ ·
(
c2∇ p̂1

)
+ ω2 p̂1 = iω(γ − 1)q̂1

+ c2∇ · f̂1 + c2iωm̂1 in �, (1a)

− iρ0ωû1 + ∇ p̂1 = f̂1 in �,

(1b)

where c is the spatially-varying speed of sound, p̂1 is the
direct acoustic pressure, û1 is the acoustic velocity, ω is
the complex valued angular frequency, γ is the heat capac-
ity ratio, q̂1 is any fluctuating heat release rate, f̂1 is any
fluctuating body force, m̂1 is any fluctuating mass injection,
and p0 is the mean pressure. Equation (1) can be written as
L(ω) p̂1 = 0, where L is a differential operator that is linear
in p̂1 but potentially nonlinear in ω. The property (Sect. 3.1
in [39])

〈 p̂†1|L p̂1〉 = 〈L† p̂†1| p̂1〉 + boundary terms = 0

defines the adjoint Helmholtz and momentum equations [39]
as

∇ ·
(
c2∇ p̂†1

)
+ ω∗2 p̂†1 = iω∗(γ − 1)q̂1(ω

∗) (2a)

+ c2∇ · f̂1 + iω∗c2m̂1 in �,

−iρ0ω
∗û1 + ∇ p̂†1 = f̂1 in �, (2b)

123



Engineering with Computers

where p̂1
† is the adjoint acoustic pressure and ω∗ is the com-

plex conjugate of the angular eigenfrequency.

2.3 Source terms in the Helmholtz equation

We assume that the local heat release rate perturbation, q1, is
proportional to the acoustic velocity at a measurement point:

q1(x, t)
q0

= FTF
u1(xr ) · nr

ub
, (3)

where q0 is the mean heat release rate, FTF is the complex-
valued flame transfer function, which depends on ω, ub is
the mean velocity and nr is the unit normal vector in the
reference direction. The fluctuating heat release rate, q̂1, is
often modelled with a local n − τ formulation [40]. In Eq.
(4), as in [19]:

q1(x, t)
q0

= nh(x)
∫
�

w(x)u1 (x, t − τ(x)) · nrdx
ub

, (4)

where n is the interaction index, τ(x) is the time delay, h(x) is
the heat release rate distribution andw(x) is themeasurement
field. In the frequency domain, we can write Eq. (4) as

q̂1 = neiωτ

∫

�

q0
ub

h(x)w(x)û1(x) · nrdx. (5)

Thefields h(x) and τ(x) can be obtained fromexperiments
or simulations [13]. If τ(x) is uniform, we replace neiωτ with
a complex-valued FTF.Without a fluctuating body force, Eq.
(1b) becomes ∇ p̂1 = iωρ0û1, so Eq. (5) becomes:

q̂1 = FTF
q0
ub

h(x)
∫

�

w(x)
iωρ0

∇ p̂1 · nr dx. (6)

We then obtain the thermoacoustic Helmholtz equation with
a distributed measurement function:

∇ ·
(
c2∇ p̂1

)
+ ω2 p̂1

= FTF(γ − 1)
q0
ub

h(x)
∫

�

w(x)
ρ0(x)

∇ p̂1 · nr dx in �. (7)

If w is a Dirac delta function, δD , then Eq. (1) becomes:

∇ ·
(
c2∇ p̂1

)
+ ω2 p̂1

= FTF(γ − 1)
q0
ub

h(x)
∇ p̂1(xr) · nr

ρ0(xr)
in �. (8)

We label the case where the FTF (i.e. n) is zero as the passive
flame and the others as the active flame.

2.4 Finite element formulation

We start by defining the Sobolev space H1(�) as:

H1(�) = {u ∈ L2(�)|∇u ∈ L2(�)},

where u is any square integrable function and L2 is the space
of square-integrable functions in�. We define the properties
of L2 such that

〈u|v〉 =
∫

�

uv∗ dx,

and 〈u|u〉 ≥ 0. To approximate the solution numerically,
we define the test function v ∈ V in the finite-dimensional
function space V h ⊂ H1(�) as

Vh = {vh ∈ H1(ω)|vh |K ∈ Pk(K )∀K ∈ Th},

wherePk(K ) is the space of polynomials degree≤ k on each
element K (triangle for 2D and tetrahedra for 3D). We then
define p̂1,h ∈ V h such that p̂1,h = ∑

k φk p1,k where φk are
real valued basis functions of space V h and p1,k ∈ C are
complex valued degrees of freedom.

2.4.1 Discretization

Within the finite element framework, we integrate the terms
in (1a) over the domain and multiply by a test function vh to
obtain

∫

�

∇ ·
(
c2∇ p̂1,h

)
vh dx +

∫

�

ω2 p̂1,h vh dx

=
∫

�

iω(γ − 1)q̂1 vh dx +
∫

�

c2∇ · f̂1 vh dx

+
∫

�

c2iωm̂1 vh dx ∀vh ∈ Vh . (9)

Note that the final two terms in Eq. (9) are only integrated
over the two domains in which the fluctuating body force f̂1
and fluctuating mass m̂1 act, which are assumed to be negli-
gible in this paper. Using integration by parts to reduce the
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smoothness requirements of the first term in Eq. (9) yields:

∑
k

⎛
⎝∑

j

⎛
⎝−

∫

�

c2∇φk · ∇φ j dx +
∫

∂�

c2∇φk · n φ j dS

+
∫

�

ω2φk φ j dx

⎞
⎠ p1,k

⎞
⎠

=
∑
k

⎛
⎝∑

j

⎛
⎝

∫

�

iω(γ − 1)q̂1φ j dx

⎞
⎠

⎞
⎠ , (10)

where n is the normal vector of the relevant boundary. The
specific acoustic impedance [41], Z , is defined as

Z = p̂1
ρ0cû1 · n . (11)

Using Eq. (11), we can transform the second integral in
Eq. (10) into the Robin integral using Eq. (1b) by writing

∫

∂�

c2
(∇φk · n)

φ j dS =
∫

∂�

c2
(
iω

cZ
φk

)
φ j dS. (12)

Hence, the matrix form of Eq. (10) is

[
A − D(ω) + ωB + ω2C

]
p = 0, (13)

where

A = −
∫

�

c2∇φk · ∇φ j dx, (14a)

B =
∫

∂�

ic

Z
φk φ j dS, (14b)

C =
∫

�

φk φ j dx, (14c)

D = FTF (γ − 1)
q0
ub

∫

�

φ j h(x) dx
∫

�

w(x)
ρ0

∇φk · nrdx,

(14d)

and p is the direct eigenvector. In Eq. (14d), there is an outer
product between the left integral and the right integral. We
denote matricesA, B andC the acousticmatrices and matrix
D as the flame matrix.

To derive the adjoints of Eq. (14) in matrix form, we take
the conjugate transpose (Hermitian, (H )) of Eq. (14) and cal-
culate the right eigenvector, which is the adjoint eigenvector:

[
AH − (D(ω))H + ω∗BH + ω∗2CH ]

p† = 0, (15)

where

AH = −
∫

�

c2∇φ j · ∇φk dx, (16a)

BH =
∫

∂�

ic

Z∗ φ j · φk dS, (16b)

CH =
∫

�

φ j · φk dx, (16c)

DH = FTF∗(γ − 1)η
∫

�

w(x)
ρ0

∇φ j · nrdx
∫

�

φk h(x)dx.

(16d)

and p† is the adjoint eigenvector. Matrices A and C are self-
adjoint 5 but matrix BH is not self-adjoint if the specific
impedance Z has a complex component. Matrix DH is cal-
culated by swapping the left and right vectors of the outer
product in Eq. (14d) and replacing the FTF with its conju-
gate, FTF∗.

The matrices A,B,C and D from Eq. (14) are easily
expressed in UFL, and can readily be assembled into MPI
distributed matrices compatible with PETSc using standard
DOLFINx functionality. The details of creation of the matri-
ces A,B and C are presented in Appendix A.1.

2.4.2 Typical boundary conditions

There are three typical boundary conditions in acoustics:
Dirichlet,Neumann, andRobin, all ofwhich canbe expressed
through Eq. (11):

1. For open boundaries (Dirichlet), Z → 0 and p̂1 = 0.
2. For closed boundaries (Neumann), Z → ∞ because û1

is zero. So ∇ p̂1 · n = 0.
3. For other boundaries (Robin), Z is a finite complex num-

ber that quantifies acoustic radiation and phase shift at the
boundary.

In helmholtz-x, Neumann boundaries are imposed naturally
through the FEM discretization. For Dirichlet boundaries,
degree of freedom (DOF) indices of the nodes on those sur-
faces are collected as a list. We use this to modify A and
C. For Robin and its special cases, choked inlet and choked
outlet, we define the weak forms for these boundaries and
use them to build B. Z can be imposed on Robin bound-
aries through the reflection coefficients,6 R, with Eq. (14b).
The UFL implementation of the Robin boundary condition
is shown in Appendix A.1.

5 AH = A and CH = C
6 Z = (1 + R)/(1 − R)
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In thermoacoustics, most of the facets are assumed to
be Neumann or choked boundary conditions. The reflection
coefficient of the inlet choked boundary condition is [3]

Rin = 1 − γinMin/(1 + (γin − 1)M2
in)

1 + γinMin/(1 + (γin − 1)M2
in)

, (17)

where γin is the heat capacity ratio on the inlet choked bound-
ary and Min is the Mach number near the downstream of
the inlet choked boundary. The UFL implementation of the
choked inlet boundary condition is shown in Appendix A.1.
Similarly, we write the choked outlet condition [3]

Rout = 1 − (γout − 1)Mout/2

1 + (γout − 1)Mout/2
, (18)

where γout is the heat capacity ratio on the outlet choked
boundary and Mout is the Mach number near the upstream
of the outlet choked boundary. The UFL of the choked outlet
boundary condition is implemented by changing R, γ and M
in Appendix Appendix A.1.

2.5 Implementation of the flamematrix

The flame matrix, D contains an outer product between two
sparse vectors, which requires careful implementation. The
relation

(γ − 1)
q0
ub

∫

�

φ j h(x) dx
∫

�

w(x)
ρ0

∇φk · nrdx (19)

is shared between Eq. (14d) and (16d). For computational
efficiency, we first perform the calculation of this cross prod-
uct and compute the direct and adjoint submatrices, Di j and
D j i . Then we multiply the submatrices with FTF or (FTF)∗,
to obtain the direct or adjoint D. The left and right compo-
nents of Eq. (19) are calculated separately during assembly:

(γ − 1)
q0
ub

∫

�

φ j h(x) dx
︸ ︷︷ ︸

left vector

∫

�

w(x)
ρ0

∇φk · nrdx
︸ ︷︷ ︸

right vector

(20)

The left and right vectors in Eq. (20) are swapped when gen-
erating the adjoint D.

In helmholtz-x, two different flame matrices are imple-
mented: one for a distributed measurement function w(x)
and the other for a pointwise measurement function w(xr ).
The right vector of Eq. (20) is implemented differently for
the pointwise flame matrix, as explained in Sect. 2.5.2. For
the distributed flamematrix, Eq. (20) remains the same (Sect.
2.5.1). Appendix A.2 explains how parallel assembly is han-
dled for the distributed and pointwise matrices.

2.5.1 Distributed measurement function

Themeasurement regionw(x) can take any shape.We choose
a truncatedGaussian distribution that integrates to 1.This dis-
tribution introduces more nonzero contributions to the flame
matrix, so is less sparse than the pointwise flame matrix.

In helmholtz-x, we use distributed w(x) for longitudi-
nal combustors and pointwise w(x) for annular combustors.
Although distributed w(x) can be used for annular combus-
tors, it has a high memory requirement.

2.5.2 Pointwise measurement function

The pointwise measurement function has a nonzero contri-
bution only at the measurement point(s) (xr ). We use this
for annular combustors, where multiple pairs of w(xr ) and
h(x f ) exist.We calculate the pointwise values of the gradient
of the trial function∇φk near the points xr such that Eq. (19)
becomes

(γ − 1)
q0 f

ub

∫

�

φ j h(x) dx f

︸ ︷︷ ︸
left vector

∫

�

∇φk(xr f ) · nr
ρ0(xr f )

dx f

︸ ︷︷ ︸
right vector

(21)

where subscript f represents the relevant flame index. If there
are N discrete sectors in the annular combustor, there are N
measurement points and heat release rate distributions. We
find the contributions to D of the corresponding flame and
its measurement point iteratively.We access the nonzero data
through the subscript f . In helmholtz-x, each individual h(x)
integrates to 1 over the domain.7 In addition, the heat release
rate volumes are tagged as separate subdomains starting from
0 to N −1. These tags are used in helmholtz-x during assem-
bly (Fig. 1a).

2.6 Bloch boundary condition

If the computational domain has an N -fold discrete rotational
symmetry (Fig. 1b), the circumferential eigenmodes can be
calculated by repeating a single geometry N times [42],
first implemented in thermoacoustics by [5, 6]. For this, we
apply Bloch-type boundary conditions to the relevant (mas-
ter and slave) boundaries. This boundary condition reduces
the computation load by 2N times. helmholtz-x follows the
methodology presented in [6]. According to Bloch-wave the-
ory, the acoustic wave can be expressed by;

p̂b(φ, r , z) = p̂b+N (φ, r , z)eibφ(φ, r , z), (22)

7 The integral
∫
�
h(x)dx = N over the domain and we input the heat

release rate q0 per single flame (q0N = qtotal where qtotal is the total
power of the annular combustor).
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Fig. 1 .

where φ, r and z are angular coordinates and b is the Bloch
wavenumber. In helmholtz-x, the Bloch boundary condition
is implemented as a Dirichlet (essential) boundary condi-
tion [6]. We map the matching nodes between master and
slave boundaries (Fig. 2) with Eq. (22). When Bloch bound-
ary conditions are applied, the number of DOFs in the mesh
reduces. This requires manipulation of the matrices in Eq.
(14) such that the DOFs of the slave boundary and its entries
are deleted, and a periodicity scalar fb = eib2π/N is imposed
on the master facets. The eigenmode of the system is found
with these matrices. Then the slave DOFs are added back to
the eigenvector.

In helmholtz-x, parallel calculations are handled by par-
titioning the mesh. This partition is performed arbitrarily.
The parallelization of the calculations with Bloch boundary
conditions is possible but is not addressed in helmholtz-x.

Fig. 2 Example mesh for Bloch BC application. The DOFs of the blue
(slave) nodes should be paired with the DOFs of the red (master) nodes
according to the numbers (from 1 to 11 in this example). The half-sector
mesh is then reflected with respect to the symmetry axis/plane in order
to guarantee one-to-one DOF mapping

This is because the pairing between master and slave DOFs
is unevenly distributed over the processors, which makes the
mapping difficult. There are several approaches that could
handle this problem. One solution would be to allocate the
DOFs of the master and slave nodes to certain processors via
custom partitioning of the mesh. Another approach would
be to use dolfinx_mpc8 library to handle the parallelization
through multi-point constraints. dolfinx_mpc currently does
not, however, support complex coefficients as a periodic con-
straint, so this would have to be implemented in order to
implement Bloch boundaries. The final approach would be
to generate periodic meshes. We currently obtain periodic-
ity by mirroring the mesh of the halved sector geometry with
respect to the burner plane. A custom subroutine that imposes
periodicity on the topology would need to be implemented to
ensure that the mesh topology is periodic. These approaches
require further development and we leave them for future
work.

2.7 Fixed-point iteration & Newton’s method

The nonlinear eigenvalue problem consists in finding the
eigenvalues ω ∈ C and the non-zero eigenvectors p ∈ C

n

8 https://github.com/jorgensd/dolfinx_mpc.
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such that

L(ω) p = 0, (23)

in which L depends nonlinearly on ω.

2.7.1 Fixed-point iteration

At each iteration, we solve a generalised eigenvalue problem
for f 2.

L( f ;ω) p = (
A + ω[k]B + f 2(ω[k])C − D(ω[k])

)
p = 0,

(24)

where f is the eigenvalue and ω[k] is a parameter. At the
zeroth iteration,ω[k] = 0. In the simplest version of the fixed-
point iteration, ω[k+1] = f (ω[k]), and the iteration might
not converge to a fixed point. According to Banach’s fixed-
point theorem, a necessary condition for the mapping, f , to
converge to a fixed point, ω, is that | f ′(ω)| < 1. In this case,
there is no guarantee that | f ′(ω)| < 1. In order to improve
the convergence, we can use a relaxation method:

ω[k+1] = g(ω[k];α) ≡ α f (ω[k]) + (1 − α)ω[k], (25)

where g is a mapping and α is a relaxation factor. The rate
of convergence is equal to the smallest positive integer, m,
satisfying ∂m/∂zmg(z = ω) �= 0. If g′(ω) = 0, then the rate
of convergence is quadratic.

g′(ω[k];α) = α f ′(ω[k]) + 1 − α = 0. (26)

From Eq. (26), we obtain α = 1/(1 − f ′(ω[k])) and use it
as a relaxation coefficient in Eq. (25). We can approximate
f ′(ω[k]) with a backward difference

f ′(ω) = f (ω[k]) − f (ω[k−1])
ω[k] − ω[k−1] (27)

A fixed-point iteration can be implemented in more than one
way. Instead of a linear eigenvalue problem, we can choose
to solve at each iteration a quadratic eigenvalue problem for
f [43];

L( f ;ω) p=(
A + f (ω[k])B+ f 2(ω[k])C−D(ω[k])

)
p=0.

(28)

We provide the pseudocode for the fixed point iteration
scheme in Algorithm 1.

function Eigensolver(A, B, C , D, tol, maxiter):
k ← −1
ω[k] ← 0
Solve L( f ; ω[k]) p = 0 to find f 2 and p
ω[k+1] = f
ω ← 2 × tol
while |ω| > tol and k < maxiter do

k ← k + 1
Solve L( f ; ω[k]) p = 0 to find f 2 and p

f ′ ← f (ω[k]) − f (ω[k−1])
ω[k] − ω[k−1]

α ← 1

1 − f ′
ω[k+1] ← α f + (1 − α)ω[k]
ω ← ω[k+1] − ω[k]

end
return ω[k+1], p

end
Algorithm1:Pseudocode for the fixed-point iteration algo-
rithm. We supply the PETSc matrices A,B,C and D(ω)

generated by DOLFINx and UFL to the algorithm. It con-
verges to the eigenvalue by iteratively updatingD(ω) when
solving the polynomial eigenvalue problem in Eq. (28).
Relaxation is used in order to accelerate the convergence.

2.7.2 Newton’s method

At each iteration, we solve an auxiliary generalised eigen-
value problem for λ.

L(ω) p = λC p. (29)

We want to find ω such that λ = 0. As with the fixed-point
iteration, here ω takes the role of a parameter. If we linearize
λ = 0 with respect to ω, we obtain

λ(ω + ω) � λ(ω) + λ′(ω)ω = 0. (30)

Therefore, at each iteration step we update ω according to

ω[k+1] = g(ω[k]) ≡ ω[k] − λ(ω[k])
λ′(ω[k])

, (31)

where g is a mapping and g′ is guaranteed to be 0 at a fixed
point. Using perturbation theory, the first derivative of λwith
respect to ω is

λ′(ω) = p†
H
L′(ω) p

p†HC p
(32)

For a degenerate eigenvalue with multiplicity m, in order to
have quadratic convergence,

ω[k+1] = g(ω[k]) ≡ ω[k] − m
λ(ω[k])
λ′(ω[k])

(33)

123



Engineering with Computers

Newton’s method is the first of a class of methods called
Householder’s methods [6, 10]. The pseudocode for the pro-
posed algorithm with Newton’s method is given in Alg. 2.

function Eigensolver(A, B, C, D, ω[0], tol, maxiter):
k ← −1
ω ← 2 × tol
while |ω| > tol and k < maxiter do

k ← k + 1
Solve L(ω[k]) p = λC p to find λ and p
Solve (L(ω[k]))H p† = λ∗C p† to find λ∗ and p†

λ′ ← p†
H
L′(ω[k]) p
p†HC p

ω[k+1] ← ω[k] − λ

λ′
ω ← ω[k+1] − ω[k]

end
return ω[k+1], p, p†

end
Algorithm 2: Pseudocode for the Newton’s method. We
supply the PETSc matrices A,B,C and D(ω) as well as
initial guess for the eigenvalue ω[0]. We iteratively update
ωwithNewton’smethodusingdirect and adjoint eigenfunc-
tions of Eq. (29). Unlike fixed-point iteration, this algorithm
strongly relies on the initial eigenvalue ω[0].

2.8 Software structure

helmholtz-x follows the philosophies of scalability, repro-
ducibility, evolvability and aims to be readable using aPython
interface [44]. helmholtz-x heavily exploits the principles of
object oriented programming. The typical simulation flow is
visualized in Fig. 3, in which the submodules of helmholtz-x
and their functionalities are classified. The source code of
helmholtz-x can be found in the helmholtz_x directory
in the repository.9 helmholtz-x uses DOLFINx v0.9.0.

2.8.1 Pipeline of helmholtz-x

In this section, we describe the helmholtz-x utilities step by
step.

Mesh, subdomains, and facets: We first need to gener-
ate the mesh, subdomains and facets. If flames are included,
we need to define the flame volume subdomains during
mesh generation. These subdomains are labeled from 0
to N − 1. We also tag facets to impose boundary con-
ditions. helmholtz-x provides simple geometries such as
intervals, squares and boxes using the DOLFINx mesh
generators. For complex geometries, we use the open

9 https://github.com/ekremekc/helmholtz-x/tree/paper.

source finite element mesh generator Gmsh, which gener-
ate grids for .step files through its Python API and Open
Cascade kernel [45]. For Gmsh meshes, we transform
the generated grids into the XDMF format for consis-
tency with DOLFINx modules. The following lines read
an XDMF mesh with its subdomains and facets tags:

1 geometry = XDMFReader("PathForMesh")
2 mesh , subdomains , facet_tags = geometry

.getAll()

There are several examples with different grids in the /nu-
merical_examples folder.

Assembling the acousticmatrices:Wedefine the param-
eters for acoustic matrices A, B and C with a standalone
params.py file that is imported into the main calculation file.
These two files are kept separate in order to track the prob-
lem parameters more conveniently. First we define boundary
conditions by specifying facet tags as a Python dictionary,
for example:

1 boundary_conditions = {1:{"Dirichlet"
},

2 3:{"
ChokedInlet":params.M_in},

3 8:{"
ChokedOutlet":params.M_out},

4 11:{"Robin":
params.R}}

where the integer dictionary keys represent the corresponding
Gmsh tags of each boundary condition. The choked inlet and
choked outlet boundaries adopt the Mach number near the
boundaries. Robin boundaries are specified with their reflec-
tion coefficients. We input the speed of sound or temperature
field to construct the acoustic matrices:

1 c = params.c(mesh)
2 matrices = AcousticMatrices(mesh ,

facet_tags , boundary_conditions ,
c, degree=degree)

where the degree represent the polynomial degree of basis
functions of the continuous Lagrange finite elements. The
parameter c is the speed of sound. The AcousticMatrices
class can also take temperature as a parameter and convert it
to the speed of sound using the relation: c = √

γ rgasT0.
Defining the flame transfer function: If we solve the

inhomogeneous Helmholtz equation, matrix D needs to be
implemented, which requires an FTF. helmholtz-x has two
different FTFs: the n−τ formulation or the state space repre-
sentation (from an experimental FTF). These can be defined
by using nTau or stateSpace classes as

1 FTF = nTau(params.n, params.tau)
2 FTF = stateSpace(params.S1 , params.s2

, params.s3 , params.s4)

by importing the necessary parameters from params.py.
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Fig. 3 The components of
helmholtz-x and the flowchart
for the solution of the
inhomogeneous thermoacoustic
Helmholtz equation

Assembling the flame matrix: For distributed D, we
define the parameters of Eq. (19) and input them to the Dis-
tributedFlameMatrix class with:

1 rho = rho_step(mesh , params.x_f ,
params.a_f , params.rho_d , params.
rho_u)

2 w = gaussianFunction(mesh , params.x_r
, params.a_r)

3 h = gaussianFunction(mesh , params.x_f
, params.a_f)

4 FTF = nTau(params.n, params.tau)
5 D = DistributedFlameMatrix(mesh , w, h

, rho , T, params.q_0 , params.u_b ,
FTF , degree=degree)

6 D.assemble_submatrices()
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where the function D.assemble_submatrices() takes two
parameters, ‘direct’ (by default) or ‘adjoint’. For implement-
ing pointwise D, we import the necessary parameters of Eq.
(21) and use them in the PointwiseFlameMatrix class by, for
example:

1 h = Q_multiple(mesh , subdomains ,
params.N_sector)

2 D = PointwiseFlameMatrix(mesh ,
subdomains , params.x_r , h, params
.rho_xr , params.q_0 , params.u_b ,
FTF , degree=degree)

3 D.assemble_submatrices()

ImposingBloch boundary conditions: If there are Bloch
boundaries, we define them in the boundary_conditions dic-
tionary. For this, we specify slave andmaster boundarieswith
their physical tags such as

1 boundary_conditions = {11: {’Robin’:
params.R_outlet},

2 12: ’Master’,
3 13: ’Slave’}

Then we manipulate the matrices in the system with

1 bloch_matrices = Blochifier(geometry ,
boundary_conditions , N,

acoustic_matrices)
2 D = PointwiseFlameMatrix(mesh ,

subdomains , params.x_r , h, params
.rho_amb , params.q_0 , params.u_b ,
FTF , degree=degree , bloch_object

=bloch_matrices)
3 D.blochify ()

where N is the Bloch number. The flame matrix classes take
the post-Blochmatrices as a bloch_object parameter to create
D.

Solving the system: If the Helmholtz equation is homo-
geneous, we use the EPS solver such that

1 target = 200 * 2 * np.pi
2 E = eps_solver(matrices.A, matrices.C

, target , nev=2, print_results=
True)

or, if we have Robin boundaries, the PEP solver such that

1 target_dir = 262 * 2 * np.pi
2 E = pep_solver(matrices.A, matrices.B

, matrices.C, target_dir , nev=10,
print_results=True)

In helmholtz-x, the unit of the target eigenvalue is rad s−1.
We converge to the targeted angular eigenfrequency. If the
problem is inhomogeneous,we haveD andwe use fixed point
iteration (or a Newton solver) such that

1 target = 200 * 2 * np.pi
2 E = fixed_point_iteration(matrices , D

, target , nev=2, i=0,
print_results= False)

All these functions return a SLEPc object E, from which we
extract eigenvalues and eigenvectors.

Extracting the eigenvalues andeigenvectors: In helmholtz-
x, we normalize the eigenvectors such that

∫
p̂21,h=1. When

the objectE is computed, it has eigenvalueω and eigenvectors
p and p† as instances. We extract them with the normal-
ize_eigenvector function with

1 omega , p = normalize_eigenvector(mesh
, E, i=0, degree=degree , which=’
right’)

where the parameter i is the indexof the converged eigenvalue
and the keyword which decides whether to return the right or
left eigenvector.

Saving the eigenvector and eigenvalue: We save the
eigenvector in XDMF file format with utility xdmf_writer,
if the degree of the finite element basis is 1. For the higher
order Lagrange spaces with the degree greater than 1, we use
VTKfile format by calling vtk_writer.We save the eigenvalue
of the corresponding eigenvector with dict_writer function.

1 # Save eigenvectors
2 xdmf_writer("PathToWrite", mesh , p) #

if degree of p is 1
3 vtk_writer("PathToWrite", mesh , p) #

if degree of p is greater than 1
4 # Save eigenvalues
5 omega_dict = {’direct’:omega}
6 dict_writer("PathToWrite", omega_dict

)

We then visualize the resulting output file with open-source
visualization toolkit ParaView [46].

2.8.2 Parallelization

Any eigenmode calculation without Bloch boundary condi-
tions can be parallelized using helmholtz-x with the com-
mand mpirun -np n_proc python3 -u file.py where n_proc
specifies the number of processors and file.py is the Python
script to be parallelized. After writing the params.py and
main scripts following the pipeline (Sect. 2.8.1), helmholtz-x
handles the parallelization internally.All computations in this
paper are performed using hardware with Intel(R) Xeon(R)
E5-2620 v4 2.10 GHz x 16 processors and 32 GB memory.

3 Numerical examples

In this section, we present several test cases with helmholtz-x
for longitudinal and annular geometries and compare them
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Fig. 4 Schematic representation
of the Rijke tube. We implement
w(x) and h(x) with Gaussian
functions

against other numerical tools in the literature. An additional
numerical verification againstmanufactured solutionwithout
the thermoacoustic effect is given in Appendix B.1.

3.1 Longitudinal thermoacoustic systems

We first verify the results of helmholtz-x in relatively simple
thermoacoustic cases: a hot wire Rijke tube, a longitudinal
combustor, and an industrial network model [2].

3.1.1 Hot wire Rijke tube

In this section, 1D, 2D and 3D test cases of the hot wire
Rijke tube are implemented. The code is presented in
numerical_examples / Longitudinal / Network
Code/RijkeTube* folders in the repository.The schematic
representation of the hot wire Rijke tube case is shown in Fig.
4.

We define w(x) and h(x) as multi-dimensional Gaussian
functions (Eq. 34) in which ndim is the spatial dimension and
σ controls the width of the Gaussian around its central point
P(x0, y0, z0):

G(x) = 1

σ ndim (2π)ndim/2

exp

(
− (x − x0)2 + (y − y0)2 + (z − z0)2 + ...

2σ 2

)
.

(34)

We supply w(x) and h(x) fields as inputs when construct-
ing the DistributedFlameMatrix instance for assembling the
flame matrix. The parameters of the Helmholtz solver are
tabulated in Table 1.

The speedof soundfield is calculated from the temperature
distribution. The interaction index n is scaled by dividing by
the cross-sectional area of the tube (πd2/4) for the 1D case
and by πd/4 for the 2D case. The 3D case does not require
scaling. For calculation of γ = cp/cv = cp/(cp − rgas),
linear temperature dependence of cp(T ) = 973.60091 +
0.1333T is used for both the Helmholtz solver and the net-
work code. For simplicity, all boundaries are assumed to
be Neumann. Passive and active flame simulations are per-
formed. Their eigenfrequencies are tabulated in Table 2 and

Table 1 Dimensional parameters of the hot wire Rijke tube

Parameter Value Unit

L 1 m

d 0.047 m

rgas 287.1 J kg−1K−1

p0 101325 Pa

ρu 1.22 kg m−3

ρd 0.85 kg m−3

Tu 285.6 K

Td 409.92 K

q0 -27.0089 W

ub 0.1006 m s−1

n 0.1 –

τ 0.0015 s

x f 0.25 m

a f 0.025 –

xr 0.2 m

ar 0.025 –

they agree well. The adjoint eigenmode computation with
helmholtz-x is explained with a more detailed test cases in
Appendix B.2.

3.1.2 Flame in a cylindrical duct with choked boundaries

In this case, we use a geometry that has area changes and
choked boundaries at both ends. The code is implemented in
numerical_examples/Longitudinal/
NetworkCode/FlamedDuct folder in the repository. A
schematic representation of this test case is shown in Fig. 5.

This example is useful to check the Helmholtz solver’s
ability to capture the influence of the area change and acoustic
energy losses through the chokedboundaries. The parameters
of this test are given in Table 3.

The density field ρ0 is calculated from the ideal gas equa-
tion of state, p0 = ρ0rgasT0 using the temperature field. The
Mach number near the inlet is Min = 0.0092 and near the
outlet is Mout = 0.011. The heat release rate and measure-
ment region fields for this case are implemented with Eq.
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Table 2 Eigenfrequencies of the
passive and active flame test
cases for the Rijke tube

Run Passive Active
f (1/s) GR (rad/s) f (1/s) GR (rad/s)

Network code [2] 169.178074 0 197.784121 6.411332

1D helmholtz-x 169.377645 0 197.699903 6.683160

2D helmholtz-x 169.377337 0 197.762459 6.668631

3D helmholtz-x 169.410068 0 198.577709 6.797977

GR denotes the growth rate. The eigenfrequencies become closer as the grid resolutions of helmholtz-x
increases

Fig. 5 Schematic representation of the flame in a cylindrical duct with choked boundary conditions. The red zone represents the heat release rate
field and the blue zone shows the fuel injection point, which is at the centre of the 0.3 m duct

Table 3 Dimensional
parameters of the flame in a
cylindrical duct

Parameter Value Unit

rgas 287.1 J kg−1K−1

p0 101,325 Pa

Tu 1000 K

Td 1500 K

q0 −57015.232 W

ub 11.4854 m s−1

n 1 –

τ 0.002 s

x f 0.5 m

a f 0.025 –

xr 0.35 m

ar 0.025 –

Tu denotes the temperature before the flame and Td denotes the temperature after the flame. γ linearly depends
on the temperature as in Sect. 3.1.1

(34). For the heat release rate field, the Gaussian function is
halved and rescaled such that it integrates to 1.

Table 4 shows the eigenvalues for passive and active flame
configurations, comparing helmholtz-x against the network
code. For the passive flame, the thermoacoustic system loses
energy through the choked boundaries as expected. For the
active flame, the growth rate becomes more negative.

The normalized magnitudes of the eigenfunctions of
helmholtz-x and a network model for the active flame case
can be seen in Fig. 6. The trend of the acoustic pressure in the

axial direction is very similar for both approaches. We note
that the network model for this thermoacoustic case includes
someconnections, each representing the thermoacoustic con-
tributions such as choked ends, flame and area change affects.
Although the absolute acoustic pressure for the network code
looks continuous (Fig. 6b), the network code performs point-
wise evaluations and performs linear interpolation between
them.
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Table 4 Eigenfrequencies of the
passive and active flame test
cases for the flame in a duct

Run Passive Active
frequency (1/s) GR (rad/s) frequency (1/s) GR (rad/s)

Network model [2] 267.1030 −10.944425 267.307657 −43.4478

helmholtz-x 261.7945 −11.9214 262.559781 −43.2349

GR denotes the growth rate. 177,737 elements are used for the FEM simulation

Fig. 6 Normalized amplitude of the direct eigenfunction p̂1 for a the
Helmholtz solver and b a network code

3.2 Annular combustors

In this section, we demonstrate the capability of helmholtz-x
to compute thermoacoustic eigenmodes for annular geome-
tries. The helmholtz-x code is held in the
numerical_examples/AnnularCombustor/MICCA
folder in the repository. For this test case, we choose a
laboratory-scale annular combustor, MICCA [47, 48]. Ther-
moacoustic limit cycles of standing, spinning, and slanting
modes are observed at some operating conditions [49, 50].
The MICCA combustor is composed of an annular plenum,
16 injectors and an annular combustion chamber. Each injec-
tor has a burner and a perforated plate. Following [48], the
perforated plate and the burner are represented by a cylin-
drical volume. Figure 7 shows one sector of the MICCA
combustor model.

For annular geometries, we use the PointwiseFlameMa-
trix class to implement D (see Sect. 2.5.2). We consider the
same operating conditions as operating point B in [48]. A
standing mode with a stable limit cycle at a frequency of
487 Hz is observed in the experiments. The total power of
the flame for each burner is q0 = 2080 W, and the bulk flow

Fig. 7 Section of one sector of theMICCA combustor. The dash-dotted
line is the axis of symmetry. The subscripts stand for: plenum (p), burner
(b), perforated plate (pp), flame (f ), combustion chamber (cc). rp = 140
mm, Rp = 210 mm, l p = 70 mm, db = 33 mm, lb = 14 mm, dpp = 18.9
mm, l pp = 6 mm, d f = 36 mm, l f = 6 mm, rcc = 150 mm, Rcc = 200
mm, lcc = 200 mm. The vertical dashed axis represents the longitudinal
axis of the burner. The red zone represents the cylindrical heat release
rate domain and the blue circle represents the pointwise measurement
function

velocity is ub = 0.66m/s. The ratio of specific heats, γ = 1.4,
is assumed to be independent of temperature. The mean tem-
perature in the plenum and up to the combustion chamber
is T̄ = 300 K. In the combustion chamber, the temperature
profile is parabolic, gradually decreasing between the values
at the flame positions x f and the chamber outlet, given in Eq.
(35). In helmholtz-x, Eq. (35) is implemented with degree 0
discontinuous Galerkin elements.

T (z) =
⎧
⎨
⎩
300, if z < z f

(1200 − 1521)
(
z−z f
lcc

)2 + 1521, otherwise.

(35)
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Fig. 8 Gain and phase of the
flame transfer function (|u′/ū| =
0.1) as a function of the
frequency. The squares are the
values obtained from the
experiments [48], and the solid
line is the transfer function of
the linear state-space model,
evaluated at real values of the
angular frequency ω. The
stateSpace class in helmholtz-x
is used to obtain an analytical
function for FTF(ω)

The experimental flame transfer function depends on the
frequency of the excitation and on the ratio of the root mean
square of the velocity fluctuation measured at the reference
point, u1, to the average flow velocity in the injector, ub (Eq.
3).

We apply Neumann boundary conditions at the combustor
walls and a Robin boundary condition at the outlet surface.
The reflection coefficient at the outlet boundary is Routlet =
−0.875 − 0.2i . In this paper, we obtain the flame transfer
function FTF, by considering a relatively small amplitude,
|u′/ū| = 0.1. In order to calculate the first derivative of the
linear operator L with respect to the eigenvalue ω without
approximations, we need FTF(ω) in Eq. (3) to be analytic
in the complex plane [51]. We approximate the frequency
response of the flame with a linear state-space model. The
transfer function of the state-space model,

FTF(ω) = sT3
(
iωI − S1

)−1s2 + s4, (36)

will correspond to the FTF. In order to obtain an analytic
transfer function, we apply the Vector Fitting algorithm [51,
52]. The experimental FTF and the transfer function of the
state-space model are shown in Fig. 8.

3.2.1 Eigenmodes

helmholtz-x can capture numerous eigenmodes by specifying
the nearest target to the desired eigenvalue. Computations
for different eigenfunctions are shown in Fig. 9 and their
eigenfrequencies are presented in Table 5.

3.2.2 Bloch boundary conditions

In this section,we check theBlochboundary condition imple-
mentation within helmholtz-x. We use a single sector of
MICCAand the sameparameters as inSect. 3.2.As explained
in Sect. 2.8.1, we impose slave and master boundaries of
Bloch boundaries with their physical tags. We calculate the
Bloch form of the acoustic and flame matrices for MICCA.
For this comparison, we only consider the plenum-dominant
azimuthal mode (Fig. 9c) and we verify the results against
[5]. The results for different case studies, including with par-
allelization, are tabulated in Table 6.

The experimental eigenfrequency found in [48] is observed
to be lower than that calculatedwith helmholtz-x andPyHoltz
[6]. Thismay be due to the approximated speed of sound field
(Eq. 35) used in both numerical computations. helmholtz-x
has slightly different eigenvalues for the full annulus and the
casewith Bloch boundary conditions. This is because period-
icity is not imposed when generating the full annulus mesh.
Computations with the full annulus mesh generated by copy-
ing and rotating the single sector mesh Nsector times would
give closer eigenvalues, as performed in [6]. This requires
further manipulation of the physical tags when using Gmsh
so we do not address this here. Although it uses fewer ele-
ments, PyHoltz [6] has a higher computational time than
helmholtz-x because it uses the numpy and scipy packages
for matrix generation and solution, rather than PETSC and
SLEPc [53]. When parallelizing from 1 to 8 processors, the
computational time of helmholtz-x reduces by a factor of 8.
For similar test cases, SLEPc shows linear scaling up to 16
processors (Sect. 9 in [54]).
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Fig. 9 Computed eigenmodes
for the MICCA combustor with
helmholtz-x. The corresponding
eigenvalues are given in Table 5
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Table 5 Eigenfrequencies of the
active flame test cases for the
MICCA combustor using
helmholtz-x

Mode Active
frequency (1/s) GR (rad/s)

Fig. 9a 149.151 −534.155

Fig. 9b 289.976 −629.029

Fig. 9c 517.364 +465.643

Fig. 9d 517.355 +435.378

Fig. 9e 721.206 +3.871

Fig. 9f 1314.411 −5.202

Fig. 9g 1617.749 −22.147

Fig. 9h 1721.129 +333.431

The corresponding modeshapes are shown in Fig. 9. The growth rates of Fig. 9c, d become closer when the
numerical grid is refined

Table 6 Eigenfrequencies of the
active flame test cases for the
MICCA combustor calculated
with fixed point iteration

Case Tool Number of Number of Eigenfrequency Computation
processors cells (1/s) time (s)

Experiment [48] – – 487 –

Full annulus [6] 1 10,528 511.4+79.4j 4627.55

Bloch [6] 1 658 511.4+79.4j 82.88

Full annulus helmholtz-x 1 163,165 517.3+74.1j 122.47

Full annulus helmholtz-x 8 167,401 517.3+74.1j 14.01

Bloch helmholtz-x 1 47,672 513.3+75.6j 15.70

4 Adjoint based shape optimization

In this section, we demonstrate the adjoint features of
helmholtz-x and apply them to shape optimization. We con-
sider a hot wire Rijke tube, as in Appendix B.1, with dimen-
sional equations. We parametrize the cylindrical geometry
using FFD. The helmholtz-x code for this example is in the
numerical_examples/ShapeSensitivities/
RijkeFFD folder in the repository.

4.1 Free form parametrization

Free form deformation establishes a parametrization rela-
tionship between the mesh nodes and the individual control
points around and inside the geometry of interest. These
control points generate the control lattice (Fig. 10a), which
can form any geometric shape. Mostly, cylindrical or cube-
shaped lattices are preferred so that the control points can be
manipulated conveniently.

Anymesh node around the control lattice can be expressed
in terms of parametric coordinates (s, t, u), as in Eq. (37),
whereX0 represents the center of the control lattice and S, T
and U are the parametric unit vectors in the radial, circum-
ferential (azimuthal) and axial directions, respectively.

X = X0 + sS + tT + uU. (37)

Considering the control lattice in Fig. 10a, the mesh nodes
are firstly transformed into cylindrical coordinates. Then
their parametric coordinates are computed with Eq. (37). The
range of the parametric coordinates is between 0 and 1 for
radial (r ) and axial (z) directions and between 0 and 2π for
the azimuthal direction (φ).

The FFD control points can be arbitrarily inserted depend-
ing on the application. In this paper, we specify the positions
of the control points with a equispaced pattern forming a
cylindrical lattice using Eq. (38). We define the FFD control
points using

Pi jk = X0 + i

l
S + j

m
T + k

n
U, (38)

where l,m, n specifies the total number of control points
in the radial, azimuthal and axial directions. The positions
and number of FFD control points are important because
they form the control lattice and determine the permitted
deformation magnitudes and directions. Therefore, the con-
trol points should be numbered and positioned to prevent
potential overlapping geometrical deformations after control
point displacements. For simple or symmetric geometries,
equispaced control points might handle the deformations.
However, for complicated geometries, an irregular pattern
for the placements might perform better depending on the
goal. For instance, control points structuring a cylindrical
lattice could handle cylinder-like geometries better, whereas
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Fig. 10 .

for cornered geometries, box-like latticesmight bemore con-
venient, with control points positioned at the corners.

We first position the FFD control points within the lattice
and calculate the parametric coordinates of the mesh nodes.
We change the coordinates of the FFD control points and
deform the mesh nodes individually with trivariate Bernstein
basis polynomials, as shown in Eq. (39):

XFFD =
( l∑

i=0

(
l

i

)
(1 − s)l−i si

( m∑
j=0

(
m

j

)
(1 − t)m− j t j

( n∑
k=0

(
n

k

)
(1 − u)n−kukPi jk

)))
(39)

The FFD configuration for the Rijke tube can be seen in Fig.
10b. We place more control points in the axial direction than
other directions in order to increase the longitudinal control.

4.2 Shape derivatives

The shape sensitivities for the thermoacoustic Helmholtz
equation are derived in [39]. InHadamard-form,we can com-

pute the shape derivative of the FFD control points using
direct and adjoint eigenvectors. The most general expres-
sion for the shape derivative is that using impedance (Robin)
boundary conditions, as in Eq. (40):

ω′
i jk =

∫

∂�

Vi jk · ni jk
(

− p̂†
∗

1

(
κc2

∂c

∂n

)∂ p̂1
∂n

+ ∇ ·
(
p̂†

∗
1 c2∇ p̂1

)

− 2
∂ p̂†

∗
1

∂n
c2

∂ p̂1
∂n

)
dS, (40)

where ω′
i jk is the complex-numbered shape derivative for

the control point Pi jk and ni jk is its outward normal vector.
When applying Neumann boundaries, we impose ∂ p̂1/∂n =
0 and ∂ p̂†1/∂n = 0. In this example, we only consider design
changes for the lateral surface in the normal directions. The
shape derivative of any control point is then

ω′
i jk =

∫

∂�

Vi jk · ni jk
(

∇ ·
(
p̂†

∗
1 c2∇ p̂1

))
dS, (41)
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for Neumann boundary conditions. We use Eq. (41) to cal-
culate the shape derivatives of the control points visualized
in Fig. 10a in the direction of facet normals. To compute the
displacement field Vi jk for the control point Pi jk , we take
the derivative of the mesh nodes with respect to the control
point, as shown in Eq. (42).

∂

∂PFFD

(
X f f d

)
= Vi jk =

( l∑
i=0

(
l

i

)
(1−s)l−i si

( m∑
j=0

(
m

j

)
(1−t)m− j t j

( n∑
k=0

(
n

k

)
(1 − u)n−kuk

)))
. (42)

ThefieldVi jk can then be used inEq. (41) to calculateω′
i jk for

Pi jk . The helmholtz-x implementation of Eq. (41) is shown
in Listing 1.

1 def shapeDerivativesFFD(geometry ,
lattice , physical_facet_tag ,
omega_dir , p_dir , p_adj , c,
acousticMatrices , FlameMatrix):

2 normal = FacetNormal(geometry.
mesh)

3 ds = Measure(’ds’, domain =
geometry.mesh , subdomain_data =
geometry.facet_tags)

4 p_adj_norm = normalize_adjoint(
omega_dir , p_dir , p_adj ,
acousticMatrices , FlameMatrix)

5 p_adj_conj = conjugate_function(
p_adj_norm)

6 G_neu = div(p_adj_conj * c**2 *
grad(p_dir))

7 derivatives = {}
8 i = lattice.l-1
9 for zeta in range(0,lattice.n):

10 derivatives[zeta] = {}
11 for phi in range(0,lattice.m)

:
12 V_ffd =

ffd_displacement_vector(geometry ,
lattice , physical_facet_tag , i,

phi , zeta , deg=1)
13 shape_derivative_form =

form(inner(V_ffd , normal) * G_neu
* ds(physical_facet_tag))

14 eig = assemble_scalar(
shape_derivative_form)

15 derivatives[zeta][phi] =
eig

16 return derivatives

Listing 1 helmholtz-x code for computing shape derivatives of FFD
control points. Line 6 represents the UFL form of Eq. (41). In the
radial direction, we only compute the shape derivatives of the control
points on the lateral surface. Between lines 9 and 15, we loop over
the control points in the azimuthal (φ) and axial (z) directions,
respectively.

We calculate the shape gradient aligned with the outward
normal vector of the relevant control point. The physical
interpretation of the complex-valued shape derivatives are

shown in Fig. 11 with example design changes to reduce the
growth rate of the eigenvalue.

In summary, the main steps of the adjoint based shape
optimization method with FFD control points are:

• the three dimensional numerical grid is generated;
• the FFD lattice and its control points are defined after
calculating the parametric coordinates of the nodes in
the grid;

• direct and adjoint eigenmodes are calculated with P2
(degree 2) finite elements;

• the shape derivatives of the FFD control points are cal-
culated and normalized;

• the shape is deformed in line with the direction provided
by the normalized shape derivatives, with a certain step
size.

4.3 Optimization

We calculate the direct and adjoint eigenmodes of the Rijke
tube with helmholtz-x and obtain the shape derivatives of
the control points on the lateral (Neumann) surface using
Eq. (41). We only allow radial displacements of the control
points and do not impose shape changes in the axial direction.

We then iterate over the control points on the lateral bound-
ary and move them individually in the direction provided by
the shape gradients. The deformed geometry of theRijke tube
is shown in Fig. 12. The growth rate of the eigenmode for the
deformed design becomes negative after deformation. The
general trend of the growth rate due to FFD changes is found
to be similar to that in [23], in which B-Spline parametriza-
tion was applied. The example in this paper, however, allows
radii changes for the inlet and outlet circular boundaries.

5 Conclusion

We present an open-source parallelized finite element frame-
work, helmholtz-x,which solves the thermoacousticHelmholtz
equation, and present increasingly elaborate examples. In
Sect. 2, we explain the FEM discretization and implemen-
tation details for helmholtz-x. In Sect. 3.1, we investigate
axial eigenmodes in longitudinal combustors. We begin with
a relatively simple example, the Rijke tube with Neumann
boundary conditions. Then we propose a more detailed lon-
gitudinal example with area changes in the axial direction
and choked boundary conditions at the inlet and outlet bound-
aries.Wefind that eigenmode computations of helmholtz-x in
different configurations agree well with those of a network
model for passive and active flame cases (Tables 2, 4). In
Sect. 3.2, we present a numerical example of a laboratory 3D
annular combustor, MICCA. We implement a 3D parabolic
temperaturefield.Wealsopresent a state space representation
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Fig. 11 Design changes that improve stability of the thermoacoustic
system. ω′ is the complex-valued shape derivative of the corresponding
FFD control point. In scenarios in which the mode is unstable and the

imaginary portion of the shape derivative at the control point has a neg-
ative sign, moving the control point along the outward normal vector
direction improves system stability

Fig. 12 Optimized geometry of the Rijke tube. The eigenfrequency after free form deformation is ω/2π = f = 202.171 − 0.354 s−1. The red
(top) and green (bottom) dots are the initial and final positions of the FFD control points for the initial (top) and final (bottom) geometries after a
few deformations

of the experimental data of the flame transfer function and
obtain its analytical expression. Then we present different
possible eigenmodes of theMICCA combustor.We visualize
the corresponding eigenvectors in Fig. 9, inwhich helmholtz-
xmanages to capture axial (Fig. 9a), circumferential (e.g. Fig.
9c, d) andmixedmodes (Fig. 9h). For the efficient calculation
of circumferential modes, we also introduce Bloch bound-
ary conditions to MICCA in Sect. 3.2.2. The circumferential
eigenmode computations are much quicker with helmholtz-
x than with existing 3D FEM tools in the literature. We
also present parallelization capabilities of helmholtz-x for
the eigenmode computations for the MICCA without Bloch
BCs. Finally,we propose an adjoint based shape optimization
application in Sect. 4. We present a free form deformation
technique to parametrize the 3D Rijke tube geometry. We
specify control points around the tube and calculate their
shape derivatives using direct and adjoint eigenfunctions.
In order to compute the shape gradients for each control
point, the adjoint feature of helmholtz-x massively reduces
the number of calculations compared with finite differences.
Through this, helmholtz-x accelerates optimization proce-

dures that can stabilize thermoacoustic systems, such as the
Rijke tube (Fig. 12).

Given its applicability to the examples shown here,
helmholtz-x couldbe auseful numerical tool to study andpas-
sively control thermoacoustic instabilities of complex shaped
real-world combustors. The adjoint and parallel capabilities
of helmholtz-x quickly calculate design changes that stabi-
lize thermoacoustic systems. These can be combined with
other constraints and entered into an optimization algorithm.

Several next steps are possible. Further acoustic or ther-
moacoustic test cases could be implemented, along with
experimental or analytical analysis. More realistic geome-
tries could be studied. The parallelization subroutines for
the Bloch boundary conditions could be implemented. The
acoustic damping caused by area changes could be imple-
mented, in order to model acoustic dissipation in high speed
incompressible flows. The acoustic properties of perforated
liners could be accounted for, e.g. via Rayleigh conductivity.
More robust interpolation schemes for 3D temperature fields
could be implemented to incorporate the temperature dis-
tributions from experiments or LES. The FFD optimization
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procedure could be advanced by includingmore complicated
geometries and other engineering constraints.

Appendix A Further development of
helmholtz-x

Appendix A.1 Customizable design

helmholtz-x can be developed further to include more acous-
tics and flame models. For example, Listing 2 shows how
Robin boundary conditions are implemented. An acoustic
liner model can be integrated through an impedance relation
on the wall. This requires the block in Listing 2 to be dupli-
cated, the name of the dictionary key to be updated, and the
relation for R to be changed. helmholtz-x will then automat-
ically include the new boundary condition when assembling
matrix B.

1 if ’Robin’ in boundary_conditions[
boundary ]:

2 R = boundary_conditions[boundary ][’
Robin’]

3 Z = (1+R)/(1-R)
4 integrals_Impedance = 1j * c / Z *

inner(phi_k , phi_j) * ds(boundary)
5 integrals_R.append(

integrals_Impedance)

Listing 2 Robin boundary condition implementation. The weak form
in line 4 is identical to Eq. (14b). We add the contributions of the Robin
boundaries to the list integrals_R.

If the user wants to impose an averaged value on a bound-
ary, an approach similar to that in Listing 3 could be used.
This example is for the implementation of choked boundaries
where the heat capacity ratio on the boundary is averaged
during the calculation of R.

1 if ’ChokedInlet ’ in
boundary_conditions[boundary ]:

2 A_inlet = MPI.COMM_WORLD.
allreduce(assemble_scalar(form(
AreaConstant * ds(boundary))), op
=MPI.SUM)

3 gamma_inlet_form = form(gamma/
A_inlet* ds(boundary))

4 gamma_inlet = MPI.COMM_WORLD.
allreduce(assemble_scalar(
gamma_inlet_form), op=MPI.SUM)

5

6 Mach = boundary_conditions[
boundary ][’ChokedInlet’]

7 R = (1- gamma_inlet*Mach /(1+(
gamma_inlet -1)*Mach **2))/(1+
gamma_inlet*Mach /(1+( gamma_inlet
-1)*Mach **2))

8 Z = (1+R)/(1-R)
9 integral_C_i = 1j * c / Z * inner

(phi_k , phi_j) * ds(boundary)
10 integrals_R.append(integral_C_i)

Listing 3 Choked inlet boundary condition implementation. Lines
2 to 4 calculate the average γ on the choked boundary. Line 7
calculates the reflection coeffient for the choked inlet boundary using
the near-upstream Mach number of the flow. Line 9 implements
the Robin boundary condition with the specific impendance Z
calculated in line 8. Finally the implemented Robin BC is added
to the Robin integrals list in line 10.

The fluctuating body force ( f̂1) and fluctuating mass (m̂1)
can be used to model the damping caused by acoustic dis-
sipation through area changes. The user needs to discretize
Eq. (1) and include damping models in the terms f̂1 and/or
m̂1. Manipulation of the UFL forms in Listing 4 adds these
terms into matrices A,B and C.
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1 # Matrix A
2 a_form = form(-c**2* inner(grad(phi_k

), grad(phi_j))*dx)
3 A = assemble_matrix(a_form , bcs=

bcs_Dirichlet)
4 A.assemble ()
5 _A = A
6

7 # Matrix B
8 if integrals_R:
9 b_form = form(sum(integrals_R))

10 B = assemble_matrix(b_form)
11 B.assemble ()
12 B_adj = B.copy()
13 B_adj.transpose ()
14 B_adj.conjugate ()
15 _B = B
16 _B_adj = B_adj
17

18 # Matrix C
19 c_form = form(inner(phi_k , phi_j) *

dx)
20 C = assemble_matrix(c_form ,

bcs_Dirichlet)
21 C.assemble ()
22 _C = C

Listing 4 UFL forms for construction of the acousticmatrices. Lines
2 and 19 represent Eqs. (14a) and (14c). In lines 3 and 20, Dirichlet
boundary conditions are imposed. Lines 8 to 16 construct matrix
B in Eq. (14) containing Robin boundary conditions using the list
integrals_R.

Appendix A.2 Handling parallel sparse matrix data

This section contains details about the algorithms that obtain
the sparse left and right vectors when constructing D and/or
its adjoint. For the distributed flame matrix, the UFL forms
of the left and right vectors are defined in listing 5.

1 left_form = form(( gamma - 1) * q_0 /
u_b * phi_k * h * dx)

2 right_form = form(inner(n_r ,grad(
phi_j)) / rho * w * dx)

Listing 5 UFL forms for left and right vectors shown in Eq. (20).

We provide the vector assembly codes for the distributed
flame matrix in Listing 6 and for the pointwise flame matrix
in Listing 7.

1 def _assemble_vectors(self ,
problem_type=’direct’):

2 left_vector = indices_and_values(
left_form)

3 right_vector = indices_and_values
(right_form)

4 if problem_type == ’direct’:
5 left_vector =

distribute_vector_as_chunks(
left_vector)

6 right_vector =
broadcast_vector(right_vector)

7 elif problem_type == ’adjoint ’:
8 right_vector =

distribute_vector_as_chunks(
right_vector)

9 left_vector =
broadcast_vector(left_vector)

10 return left_vector , right_vector

Listing 6 We first define the left and right vector forms as in Listing
5 The internal function indices_and_values extracts the nonzero
values from the left (line 2) and right (line 3) sparse vectors. If the
problem is direct, the right vector is replicated over the processors
and the left vector is distributed evenly. For the adjoint problem, the
procedure is reversed.
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1 def _assemble_vectors(self , flame ,
point):

2 left_form = form((gamma - 1) *
q_0 / u_b * inner(h, phi_j)*dx(
flame))

3 left_vector = indices_and_values(
left_form)

4 _, _, owning_points , cell =
determine_point_ownership( mesh.
_cpp_object , point , 1e-10)

5 right_vector = []
6 if len(cell) > 0: # Only add

contribution if cell is owned
7 cell_geometry = mesh.geometry

.x[mesh.geometry.dofmap[cell [0]],
:gdim]

8 point_ref = mesh.geometry.
cmaps [0]. pull_back ([point],
cell_geometry)

9 right_form = Expression(inner
(grad(TestFunction(V)), n_r),
point_ref , comm=MPI.COMM_SELF)

10 dphij_x_rs = right_form.eval(
mesh , cell)[0]

11 right_values = dphij_x_rs /
rho_u

12 global_dofs = dofmaps.
index_map.local_to_global(dofmaps
.cell_dofs(cell [0]))

13 for global_dof , right_value
in zip(global_dofs , right_values)
:

14 right_vector.append([
global_dof , right_value ])

15 right_vector = broadcast_vector(
right_vector)

16 return left_vector , right_vector

Listing 7 Code to calculate the nonzero data for the pointwise flame
matrix.Theparametersflame andpoint represent theflame tag and its
measurement point (line 1). Line 2 is identical to the left vector of Eq.
(21). For the left vector data, we use only the corresponding flame
subdomain (dx f ) during integration and we calculate its nonzero
data in line 3. Line 9 is identical to the right vector of Eq. (21).
We calculate the value of the gradient of the test function at the
measurement point (line 11) and find the DOFs of the cell that
includes themeasurement point (line 12).We store the global indices
of the DOFs of the cell and construct the (col index, value) pairs of
the right vector (lines 13 and 14). Finally, we copy the data of the
right vector over the processors for parallel pointwise D generation
(line 15).

We present the MPI utility functions of helmholtz-x for
constructing the sparse matrix D and its adjoint, DH . FEn-
iCSx uses MPI for handling the parallelization [32]. When
we parallelize the calculation using n proc processes, FEn-
iCSx partitions the mesh into n proc pieces. Each piece has
different nonzero entries for the left and right vectors that
we use to construct D (Sect. 2.5). We need the positions and
entries of those nonzero contributions for both vectors. We
obtain these as (indices, nonzero values) pairs. For D, we
obtain row indices from the left vector and column indices
from the right vector. We calculate the nonzero entries by
multiplying the nonzero values of the left and right vectors
within the same process. The nonzero data for the right vector
may, however, be ‘None’, while the contribution for the left
vector may be nonzero. Without modification, the multipli-
cation of nonzero entries in that process would give ‘None’,
meaning that the unmodified algorithm would fail to insert
somenonzero contributions during assembly. To address this,
we implement a broadcasting function that copies the right
vector data to each process, as shown in Listing 8.

1 def broadcast_vector(vector):
2 vector = MPI.COMM_WORLD.gather(

vector , root =0)
3 if vector:
4 vector = [j for i in vector

for j in i]
5 else:
6 vector =[]
7 vector = MPI.COMM_WORLD.bcast(

vector ,root =0)
8 return vector

Listing 8 Broadcasting function to gather the right vector indices
and values from the processors to process 0 (line 2) and broadcast
the nonzero contributions back to the processors (line 7) during a
parallel run.

To improve the share of computational load of each process,
we also distribute the left vector data evenly over the proces-
sors. The algorithm for this is in Listing 9.
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Fig. 13 Example of the nonzero data handling for left and right vectors
using four processors. The left vector’s data consists of nonzero row
pairs (row indices, row values), while the right vector’s data consists of
nonzero column pairs (column indices, column values). When the left
and right vectors contain non-zero data, the cross multiplication of the
values of the vectors can give ‘None’, so nonzero contributions are lost

(gray case). To prevent this, we copy the data of the right vector to each
process (blue case) using the algorithm in Listing 8.We then evenly dis-
tribute the data of the left vector using the algorithm described in Listing
9. This shares the workload among processors (green case). Finally, the
left and right vector data become ready for matrix construction

1 def distribute_vector_as_chunks(
vector):

2 vector = MPI.COMM_WORLD.gather(
vector , root =0)

3 if vector:
4 vector = [j for i in vector

for j in i]
5 chunks = [[] for _ in range(

MPI.COMM_WORLD.Get_size ())]
6 for i, chunk in enumerate(

vector):
7 chunks[i % MPI.COMM_WORLD

.Get_size ()]. append(chunk)
8 else:
9 vector = None

10 chunks = None
11 vector = MPI.COMM_WORLD.scatter(

chunks , root =0)
12 return vector

Listing 9 Function used to distribute the left vector indices and
values over the processors during parallel runs. The algorithm
initially gathers all nonzero data at the root (line 2). It then distributes
the data across the processors as evenly as possible.

These operations are demonstrated in Fig. 13.

Appendix B Further test cases

Appendix B.1 Verification of passive acoustic
eigenmodes

We demonstrate simple acoustic cases without a flame in
order to compare the results of helmholtz-x against avail-
able analytical solutions. For these test cases, we repeat the
calculations presented in Sect. 5 in [43]. We consider a two-
dimensional acoustic domain with a length of L = 0.4m
and a height of h = 0.1m. We assume the speed of sound
to be uniform, c0 = 450m/s over the domain. We model
the boundaries as a Neumann condition except for the top
boundary that is modelled as an impedance (Robin) bound-
ary condition. We define the impedance Z = a + bi , where
a denotes the acoustic resistance and b denotes the acous-
tic reactance of the boundary. The manufactured solution for
this case is [43]:

123



Engineering with Computers

e2ikyh
(
ky − k

Z

)
−

(
ky + k

Z

)
= 0, ky =

√
k2 −

(nπ

L

)2
,

(B1)

where k = ω/c0 represents thewavenumber and n represents
themodenumber.Wecalculate the eigensolutions ofEq. (B1)
with n = 1 for various purely reactance and purely resistance
impedances. We set up these cases using helmholtz-x and
compare the results in Fig. 14. For the presented numerical
cases, the eigenfrequencies obtained with helmholtz-x show
very good agreement with the analytical eigenfrequencies.

Appendix B.2 Verification of adjoint eigenmodes

We present tests to check the adjoint capability of helmholtz-
x by replicating the results in [19]. The helmholtz-x codes for
these cases are in thenumerical_examples/Longitu-
dinal/PRF folder in the repository. The parameters are in
Table 7.

Fig. 14 Computed eigenfrequencies for the two-dimensional acoustic case with a purely reactive and b purely resistive impedance boundary
conditions on y = h
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We run test cases for multidimensional configurations (as
inSect. 3.1.1). The inlet andoutlet boundaries areRobin,with
reflections coefficients tabulated in Table. 7. The resulting
eigenvalues are in Table 8.

We also show the direct and adjoint pressure eigenfunc-
tions in Fig. 15.

Table 7 Dimensional
parameters of the hot wire Rijke
tube taken from [19]

Parameter Value Unit

L 1 m

d 0.047 m

rgas 287.1 J kg−1 K−1

p0 100,000 Pa

ρu 1.22 kg m−3

ρd 0.85 kg m−3

q0 200 W

ub 0.1 m s−1

n 1.4e-7 –

τ 0.0015 s

Rinlet −0.975 − 0.05i –

Routlet −0.975 − 0.05i –

x f 0.25 m

a f 0.025 –

xr 0.2 m

ar 0.025 –

The interaction index n changes for 1D and 2D for dimensional consistency

Table 8 Eigenfrequencies of the
passive and active flame test
cases for the Rijke tube, where
GR denotes the growth rate

Run Direct Adjoint
f (1/s) GR (rad/s) f (1/s) GR (rad/s)

[19] 3.425513 +0.001926 3.425514 -0.001904

1D-helmholtz-x 3.421902 +0.002225 3.421902 -0.002224

2D-helmholtz-x 3.422663 +0.002180 3.422663 -0.002180

3D-helmholtz-x 3.420690 +0.002666 3.420690 -0.002667

The grid resolutions of the helmholtz-x tests can be improved to obtain eigenfrequencies closer to the results
in [19]
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Fig. 15 1D direct and adjoint pressure eigenfunctions in the Rijke tube
using helmholtz-x and [19]. The interval is discretized into 100 uniform
sections and a first order continuous Lagrange space has been used for
the simulation using the reference [19]

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00366-025-02107-
1.
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