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ABSTRACT

Experiments are performed on a turbulent swirling flame
placed inside a vertical tube whose fundamental acoustic mode
becomes unstable at higher powers and equivalence ratios. The
power, equivalence ratio, fuel composition and boundary con-
dition of this tube are varied and, at each operating point, the
combustion noise is recorded. In addition, short acoustic pulses
at the fundamental frequency are supplied to the tube with a loud-
speaker and the decay rates of subsequent acoustic oscillations
are measured. This quantifies the linear stability of the system
at every operating point. Using this data for training, we show
that it is possible for a Bayesian ensemble of neural networks
to predict the decay rate from a 300 millisecond sample of the
(un-pulsed) combustion noise and therefore forecast impending
thermoacoustic instabilities. We also show that it is possible to
recover the equivalence ratio and power of the flame from these
noise snippets, confirming our hypothesis that combustion noise
indeed provides a fingerprint of the combustor’s internal state.
Furthermore, the Bayesian nature of our algorithm enables prin-
cipled estimates of uncertainty in our predictions, a reassuring
feature that prevents it from making overconfident extrapola-
tions. We use the techniques of permutation importance and inte-
grated gradients to understand which features in the combustion
noise spectra are crucial for accurate predictions and how they
might influence the prediction. This study serves as a first step
towards establishing interpretable and Bayesian machine learn-
ing techniques as tools to discover informative relationships in
combustor data and thereby build trustworthy, robust and reli-
able combustion diagnostics.

INTRODUCTION
Thermoacoustic instabilities, arising from the coupling be-

tween unsteady heat release rates and acoustic waves in combus-
tors, are a persistent problem for gas turbine and rocket engine
manufacturers. Heat release rate fluctuations at the flame create
acoustic fluctuations, which then reflect off the boundaries, re-
turn to the flame and create more heat release fluctuations. This
mechanism can set up a positive feedback loop– causing pres-
sure fluctuations with progressively higher amplitudes and severe
damage to the engine.

The phase lag between pressure and heat release rate fluctua-
tions, which governs the thermoacoustic stability of a system, de-
pends on acoustic, hydrodynamic and combustion mechanisms,
which have different scaling behaviours. Accurate computational
modeling is thus very challenging [1]. At the moment, design-
ers accommodate thermoacoustic instabilities in their engines by
avoiding unstable regions of the operating parameter space. This,
however, conflicts with other design objectives such as reducing
NOx emissions by operating at leaner fuel-air ratios. The aim
of this paper is to develop and test a machine learning algorithm
that can learn how close a combustor is to instability and ensure
its safe operation near unstable conditions.

Combustion noise as a diagnostic
The noise radiated by a turbulent combustor is generated by

deterministic fluid dynamic phenomena such as unsteady dilata-
tion due to fluctuating heat release rates or the acceleration of
vorticity or entropy waves, and modified by acoustic reflections
off boundaries [2]. We therefore expect pressure measurements
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to contain some information about the state of the combustor.
Inspired by Zelditch [3] who answered Kac’s whimsical ques-
tion “Can you hear the shape of a drum?” [4] by proving that
the eigenfrequencies of vibration determine the shape of an ana-
lytic and convex membrane uniquely, our study seeks to extract
useful information about the state of a turbulent combustor from
the power spectra of noise samples. This would have important
practical implications. For example, it would allow noise to serve
as an early warning prognostic for thermoacoustic instability or
blowoff. It would also enable pressure measurements to vali-
date the readings of other sensors such as flowmeters, making
the system more robust to sensor failures. Pressure and vibration
measurements are easily accessible in fielded combustors so it
makes sense to use them as extensively as possible.

Historically, the motivation to understand and model com-
bustion noise stems from the desire to reduce noise pollution,
such as that from an aircraft [5] or a factory furnace [6]. Pio-
neering theoretical work by Lighthill in aeroacoustics [7] was ex-
tended to the analytical study of combustion noise by Strahle [8],
who used Lighthill’s acoustic analogy to derive a formula relat-
ing the far-field acoustic perturbation to heat release rate fluc-
tuations by treating the turbulent pre-mixed flame as an assem-
bly of monopole sound sources. It was also noted [9] that noise
can be generated by entropy inhomogeneities in regions of ac-
celerating flow when combustion occurs in confined chambers.
Aside from theoretical analysis, various empirical correlations
that try to predict the overall noise level [10] or the spectral
characteristics such as peak frequency, slope of rolloff in the
high-frequency range, [11] etc. as a function of operating con-
ditions were also obtained from experimental data. More recent
studies have employed numerical simulations to predict combus-
tion noise for open flames as well as complex geometries. A
study by Ihme et al. [12] employs a model for predicting direct
combustion noise generated by turbulent non-premixed flames
where the Lighthill acoustic analogy is combined with a flamelet-
based combustion model and incorporated into an LES simula-
tion. Their predictions match well with experimental results al-
though discrepancies were noted at high frequencies. The hybrid
CHORUS method [5] predicts the noise output by performing
LES of the combustion chamber, extracting the acoustic and en-
tropy waves and then propagating these waves through the en-
gine using analytical methods. Their results compare well with
experiments.

The inverse problem of using noise to infer conditions inside
the combustor is somewhat less well studied, although there has
been a fair amount of research interest within the thermoacous-
tic community [1]. Simplifying the combustion noise generation
process, Lieuwen [13] uses the decay rate of autocorrelation to
determine the stability margin of a combustor. Several subse-
quent studies apply tools from nonlinear dynamics to combus-
tion noise time-series and obtain useful precursors of instability.
Gotoda et al. [14] employ the Wayland test for non-linear deter-

minism to show that when a system transitions to thermoacous-
tic instability, the combustion noise changes its character gradu-
ally from random and uncorrelated to completely deterministic.
Similarly, Nair and colleagues [15] show the disappearance of
the multifractal signature of combustion noise as it transitions
to instability and note that measures such as the Hurst expo-
nent can serve as an early warning of thermoacoustic instabili-
ties. A follow-up study by Godavarthi et al [16] looks at mea-
sures derived from recurrence networks as instability precursors.
Kobayashi et al [17] use a modified version of the permutation
entropy to detect a precursor of the frequency-mode-shift in their
staged aircraft engine model combustor before the amplification
of pressure fluctuations. More recent work from the past year
has also explored machine learning oriented approaches to the
problem. Mondal et al [18] apply Hidden Markov Models to
pressure timeseries for the early detection of instabilities in a
Rijke tube, while Kobayashi et al [19] and Hachijo et al [20]
combine Support Vector Machines with complex networks and
statistical complexity measures, respectively, to do the same in a
swirl-stabilized combustor.

The utilization of combustion noise for diagnostic purposes
has not been limited solely to the forecasting of thermoacoustic
instabilities. Acoustic precursors from combustion noise have
been identified for lean blowout in a pre-mixed flame by Nair
and Lieuwen [21] using the concentration of acoustic power in
low-frequency bands, wavelet-filtered variance and threshold-
ing techniques. Gotoda and co-workers [22] study the dynam-
ics of pressure fluctuations near lean blowout using permutation
entropy, fractal dimensions, and short-term predictability. Mu-
rayama et al. [23] have also used the weighted permutation en-
tropy of combustion noise to develop precursors of blowout for
their model gas turbine combustor.

The case for intepretable, Bayesian machine learning
A limitation of the approaches described above is that, by

looking at the data through a handcrafted and predefined lens,
one may miss other relevant information in the data. Machine
learning techniques, on the other hand, find relevant functional
relationships in the data without being influenced by researchers’
preconceptions. Deployed correctly, they also use all available
information in the data. The downside of a purely data-driven
approach, however, is that it is only applicable to the specific
system that generated the data.

To address this problem of limited portability and the fact
that acoustic emissions are an imperfect source of information,
the Bayesian machine learning technique we employ in this study
provides principled measures of uncertainty in our predictions.
We start with an appropriately vague prior belief about what the
output of our model should be and as we observe more data,
we update this belief to obtain progressively tighter posterior
distributions in accordance with Bayes’ rule. This ensures that
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the model does not make overconfident predictions from out-
of-distribution inputs which are entirely different from what it
was trained on. These uncertainty estimates are particularly im-
portant when using a machine learning model in a critical de-
vice such as an aircraft engine. Bayesian machine learning tech-
niques with correctly specified priors can also work with smaller
amounts of data and are resistant to overfitting [24]. They can
also be used in continual learning without catastrophic forget-
ting [25], which is particularly important if we want to keep
learning from data throughout the operating lifetime of a device.

In this study, we use anchored ensembling, which is a simple
and scalable way to train Bayesian neural networks [26]. First,
we perform a set of experiments on a Rijke tube driven by a
swirling premixed turbulent flame. The power, equivalence ra-
tio, fuel composition and the exit area of the tube are all varied
so that noise data can be collected over a wide range of operating
parameters. The decay rates of oscillations provoked by acoustic
pulses are measured. The thermoacoustic behaviour of the com-
bustor ranges from very stable to almost unstable. The challenge
for our neural network ensembles is then to predict the power,
the equivalence ratio and the measured decay rate using only a
300 ms sample of the (un-forced) combustion noise as their in-
put. We select this challenge because conditions in an engine can
change rapidly and decisions should be based on only the most
recent sensor data history. This is a high-dimensional regression
problem to which our neural network ensembles are perfectly
suited.

A common criticism of machine learning techniques is that
they are black-box models that are completely opaque to the user.
To remedy this, we have used a technique known as Integrated
Gradients [27] to reveal features in the acoustic spectrum that
drive the predictions from our Bayesian neural network ensem-
bles.

EXPERIMENTAL SETUP
Figure 1 shows the experimental apparatus used in this

study. An ordinary Bunsen burner is modified by attaching
swirler vanes and a nozzle featuring a large central hole for the
main flame and smaller surrounding holes for the pilot flames. A
premixed mixture of methane and ethylene is used as fuel. This
produces a noisy swirling premixed turbulent flame that is an-
chored over a wide range of operating conditions. The burner is
placed inside a steel tube of length 800 mm and internal diam-
eter 80 mm. Annular discs, with hole diameters 75, 65 and 55
mm, can be attached to the downstream end of the tube in order
to change the acoustic boundary conditions.

The noise is recorded by a G.R.A.S. 26TK microphone
placed near the bottom end of the tube. The raw pressure signal
is sampled at 10000 Hz, which is considerably higher than the
dominant frequencies in the typical noise spectra. Data acqui-
sition is managed using a National Instruments BNC-2110 DAQ

FIGURE 1. SCHEMATIC OF EXPERIMENTAL SETUP, CON-
SISTING OF A 1 KW TURBULENT SWIRL FLAME INSIDE A
STEEL TUBE OF LENGTH 800 MM AND INTERNAL DIAMETER
80 MM

FIGURE 2. LEFT: TURBULENT COMBUSTOR EXCITED BY AN
ACOUSTIC PULSE RIGHT: FILTERED SIGNAL WITH BEST-FIT
LINE IN RED

device and the software LabVIEW. Flow rates for fuel and air are
controlled using Bronkhurst EL-FLOW R© Select flowmeters. A
70 W VISATON 3020 BG loudspeaker is placed near the base of
the burner to supply acoustic pulses.

The system is operated at 900 different combinations of op-
erating parameters which form a grid in our 4-dimensional op-
erating parameter space (volumetric flow rate, equivalence ratio,
fuel composition and outlet boundary condition). Experiments
are performed at methane:ethene ratios of 3:4, 1:1 and 5:4 (v/v)
and tube outlet diameters 80, 75 and 65 mm. For each of the
3 methane-ethene ratios and each of the 3 outlet boundary con-
ditions, we methodically sweep through 100 different fuel and
air mass flow rates. Figure 3 shows the 100 pairs of equivalence
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FIGURE 3. EQUIVALENCE RATIOS AND FLOW RATES OF
DATAPOINTS FOR METHANE:ETHENE RATIO OF 3:4 AND OUT-
LET DIAMETER 80 MM

ratios and volumetric flow rates at which experiments are per-
formed while the methane:ethene ratio and outlet diameter re-
mained fixed at 0.75 and 80 mm, respectively. While this figure
represents a 2D slice of the entire dataset– similar, but not identi-
cal, equivalence ratios and flow rates were achieved for the other
fuel compositions and boundary conditions. These experiments
mimic, in a laboratory setting, the multidimensional nature of the
operating parameter space in a real jet engine where the boundary
condition is typically dynamic and the engine controller has the
authority to change multiple quantities such as fuel split, power,
fuel inlet pressure, equivalence ratio, core speed and others. Any
early warning signal needs to function over the whole range of
operating parameters, not just when a single parameter is varied.

For each combination of operating parameters, the combus-
tion noise is recorded and the decay rate of a 50 millisecond-long
acoustic pulse at 230 Hz (the fundamental acoustic frequency of
the system) is obtained. To extract the decay rate, the microphone
signal is processed in a manner similar to Schumm et al [28].
First, a Butterworth filter, with a width of 20 Hz and centered at
the excitation frequency 230 Hz, is used to filter out the unde-
sired frequencies. Then a Hilbert transform is applied to obtain
the instantaneous amplitude, A(t), of the pressure signal. When
the logarithm of the obtained amplitude is plotted against time, it
is possible to identify a linear region corresponding to exponen-
tial decay. To isolate the linear region, we ignore 50 ms of data
immediately after the ping. The noise floor is computed from the
RMS value of the pre-pulse signal and the decaying signal is cut-
off when it decays to twice this value. The slope of this region
then corresponds to the decay rate of the oscillations.

FIGURE 4. CONTOUR PLOT OF DECAY TIMESCALE (SEC-
ONDS) FOR METHANE:ETHENE RATIO OF 3:4 AND OUTLET DI-
AMETER 80 MM

We use the measured decay rate (or its negative inverse,
the decay timescale) at each operating point as a proxy for the
thermoacoustic stability at that point. In general, decay rates or
timescales quantify the linear stability of a system, which is a
necessary but not sufficient condition for global thermoacoustic
stability. However, for the high-amplitude instability we want to
avoid, the linear stability boundary is observed to characterize
the onset quite well. In Figure 4, we show a plot of the decay
rate as a function of flow rate and equivalence ratio, for the same
boundary condition and fuel composition as in Figure 3. (outlet
diameter = 80 mm, methane-ethene ratio = 0.75) We observe that
the decay rate only reaches values close to 0 and decay timescales
reach their highest values ( 0.35 seconds for this particular subset
of the data) in the vicinity of the high-amplitude 230 Hz instabil-
ities. This holds true for the other 8 combinations of boundary
conditions and fuel compositions as well. Therefore, if a diag-
nostic tool is well-correlated with the decay rate or timescale, it
will be able to warn us when we are too close to the instability.

STATISTICAL TOOLS
Precursors of thermoacoustic instability from the liter-
ature

Nair and colleagues [15] suggest that there is a loss of mul-
tifractality in combustion noise as combustors progress towards
combustion instability, which is reflected in a decline of the sig-
nal’s second-order generalized Hurst exponent H2 prior to an in-
stability. The generalized Hurst exponent Hq is defined by the
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scaling of the q-th order moments of the signal. For a time series
g(t),

〈|g(t + τ)−g(t)|q〉t
〈|g(t)|q〉t

∼ τ
qHq (1)

where q > 0, τ is the lag and the averaging, denoted by 〈·〉t is
over the window t � τ . Hq can be computed simply from the
above expression by applying a logarithmic transformation to
both sides and obtaining the slope of the least squares fitted line
for a suitable scaling window of lag times. For our study, we
calculate the second-order generalized Hurst exponent using 1
second slices from the dynamic pressure sensor data (10000 data
points) and a scaling window between 0.01 and 0.02 seconds,
which corresponds to approximately two to four cycles of oscil-
lations at combustion instability. Basic sanity checks have been
performed and it is found that a synthetic Gaussian white noise
signal has a H2 close to 0.5 while a synthetic periodic signal at
the instability frequency has a H2 close to 0, as expected.

Lieuwen [13] derived an effective damping coefficient ξi for
a thermoacoustic mode in terms of the decay rate ξi of the au-
tocorrelation Ci(τ) of the i-th acoustic mode ηi(t), assuming the
combustor to be a second-order oscillator, the background noise
to be spectrally flat and parametric disturbances to be absent:

Ci(τ)= e−ωiξiτ

cos
(

ωiτ

√
1−ξ 2

i

)
+

ξ√
1−ξ 2

i

sin
(

ωiτ

√
1−ξ 2

i

)
(2)

The autocorrelation decay rate is calculated the same way
as the decay rate of the acoustic pulses. A 1-second long sam-
ple of the raw pressure signal is first put through a Butterworth
filter centered around the frequency of interest (here, 230 Hz)
to obtain the signal ηi(t). The autocorrelation Ci(τ) is then ob-
tained as a function of the lag time τ and its envelope determined
through the Hilbert transform. The slope of the least-squares
fitted line through the logarithm of the autocorrelation amplitude
then gives us the desired effective damping coefficient ξi. We ex-
pect this quantity to tend towards zero as our system approaches
instability.

Bayesian neural network ensembles
The Bayesian approach to training neural networks [29] en-

tails placing a sensible prior probability distribution over the pa-
rameters of the network and inferring the posterior distribution
over parameters using the observed data and Bayes’ rule. Train-
ing a Bayesian neural network can be technically challenging
and computationally expensive. Exact inference is intractable
and the gold-standard technique to integrate over the posterior,

Markov Chain Monte Carlo, can be inefficient. Researchers of-
ten resort to variational approximations of the true posterior [30],
parametrizing the posterior and minimizing the Kullback-Leibler
divergence between this variational distribution and the true pos-
terior during training. However, while computationally cheap,
mean-field variational inference too has its drawbacks such as
not maintaining correlations between parameters. Recently, a
different method to train Bayesian neural networks, based on
ensembling, has been proposed. This new method is cheap,
simple, scalable and yet manages to outperform variational in-
ference in several uncertainty quantification benchmarks [26].
Consider a data set (xn,yn), where each data point consists of
features xn ∈ IRD and output yn ∈ IR. Define the likelihood for
each data point as p(yn | θ ,xn,σ

2
ε ) = N (yn | NN(xn;θ),σ2

ε ),
where NN is a neural network whose weights and biases form
the latent variables θ while σ2

ε is the data noise. Define the
prior on the weights and biases θ to be the standard normal
p(θ) = N (θ | µprior,Σprior). The anchored ensembling algo-
rithm then does the following:

1. The parameters θ0, j of each j-th member of our neural net-
work ensemble are initialized by drawing from the prior dis-
tribution N (µprior,Σprior).

2. Each ensemble member is trained ordinarily (e.g. using
stochastic gradient descent) but with a slightly modified loss
function that anchors the parameters to their initial values.
The loss function for the j-th ensemble member is given by
Lossanchor, j =

1
N ||y− ŷ j||22 + ||Σ1/2(θ −θ0, j)||22, where the i-

th diagonal element of Σ is the ratio of data noise to the prior
variance of the i-th parameter.

Pearce et al. [26] prove that this procedure approximates the
true posterior distribution for wide neural networks. In our study,
we train an ensemble of 10 two-layer neural networks with 25
nodes in each layer and ReLU activation. The input to our net-
work is the 1501-dimensional power spectrum obtained through
a Fourier transform of the 300 ms noise sample. The outputs are
the decay time scale (the negative inverse of the measured de-
cay rate), the equivalence ratio, and power. Before training, all
the input variables and outputs are normalized using a min-max
strategy to lie between -1 and 1. Noise samples from 180 ran-
domly chosen operating parameter combinations (20% of data)
are held out in the test set for evaluating the performance of the
model. 10-fold cross-validation is performed where 10 different
models are trained using 10 random train-test splits. This ensures
the stability of our algorithm’s performance with respect to dif-
ferent train-test splits. Each ensemble member is trained using
the stochastic gradient descent optimizer ADAM [31]. The tun-
able hyperparameters of our model such as the learning rate, the
data noise and the number of nodes in each layer are optimized
by minimizing the negative log-likelihood of data in a validation
set.
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Interpretation using Integrated Gradients and Permu-
tation Importance

To attribute the predictions of our network ensemble to the
input features we use the technique of integrated gradients [27].
This is a simple scalable method that does not need any instru-
mentation of the network and can be computed easily using a
few calls to the gradient operation. For deep neural networks,
gradients of the output with respect to the input is a natural ana-
log of the linear regression coefficients. In a linear model, the
coefficients characterize the relationship between input and out-
put variables globally. In a nonlinear neural network, however,
a gradient at a point merely characterizes the local relationship
between a predictor variable and the output. The main idea be-
hind integrated gradients is to compute the path integral of the
gradient of outputs with respect to the inputs from a baseline in-
put to the input at hand. For an image recognition algorithm, a
completely black image could be a reasonable choice of baseline
while for a regression problem like ours where the input variables
were normalized to lie between −1 and 1, an input of all zeros is
a reasonable choice. We consider the straight-line path (in IRn)
from the baseline x′ to the input x, and compute the gradients at
all points along the path. The integrated gradient along the i-th
dimension is then defined as follows.

IntegratedGradsi = (xi− x′i)
∫ 1

α=0

δF(x′+α(x− x′))
δxi

dα (3)

This integral is computed numerically. Accumulating the
gradients with a path integral ensures that we estimate the aggre-
gate influence of each predictor variable over the outputs. We use
an implementation of Integrated Gradients from the DeepExplain
library [32].

Understanding network predictions via Integrated Gradi-
ents involves looking at individual examples and their attribu-
tion plots. To gain a global overview of the relative importance
of input features, we also use the permutation importance tech-
nique [33]. To compute permutation feature importances, we
shuffle the values of a set of features between samples in the
dataset and measure the impact of randomizing them on the accu-
racy of a trained model. The average error of model predictions
should increase significantly if important features are random-
ized in this way and the decrease in accuracy can therefore be
understood as a measure of a feature’s criticality. For our data,
we randomize contiguous 33 Hz blocks in the input spectra of the
test data and measure the percentage increase of the Root Mean
Squared Error.

The code and data used to produce the results in this paper
are available as a Google Colab notebook in the Github reposi-
tory https://github.com/Ushnish-Sengupta/FYR.
The notebook can be run in the web browser and does not re-
quire the installation of any software.

FIGURE 5. PLOT OF MEASURED DECAY TIMESCALES VS
DECAY TIMESCALES PREDICTED BY THE NEURAL NETWORK
ENSEMBLE ON THE TEST DATA

RESULTS
We train an ensemble of neural networks that takes the

power spectrum of a noise sample as input and predicts the neg-
ative inverse of the measured decay rate (the decay timescale).
Figure 5 shows the performance of the ensemble on the test
dataset, where we observe that the decay timescales are pre-
dicted reasonably accurately. In the course of our 10-fold cross-
validation, the root mean squared prediction error ranged from
0.023 seconds to 0.027 seconds, indicating that our algorithm is
stable to variations in the training-test split. It is particularly in-
teresting to note how the grey errorbars (±1 S.D.) widen for the
operating points closer to instability, corresponding to larger de-
cay timescales. This is because there are comparatively fewer
data points close to instability (only 13 operating conditions in
the training dataset have a decay timescale exceeding 0.3 sec-
onds) making the ensemble less certain about its predictions in
that region. This demonstrates how principled uncertainties pre-
vent blind overconfidence in our machine learning models. Nev-
ertheless, even with the slightly larger uncertainties and predic-
tion errors for those points, this algorithm can clearly indicate
when the system approaches thermoacoustic instability.

We also trained our ensembles to recognize the equivalence
ratio and burner power from a noise sample. Figures 6 and 7
show the measured values of these state variables plotted against
the predictions of our ensembles and reveal an even more accu-
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FIGURE 6. PLOT OF MEASURED EQUIVALENCE RATIO VS
EQUIVALENCE RATIO PREDICTED BY THE NEURAL NET-
WORK ENSEMBLE ON THE TEST DATA

rate prediction. The root mean squared error in equivalence ratio
prediction ranged between 0.031 to 0.033 (≈ 3.5%), while the
error for the power varied from 0.021 kW to 0.025 kW (≈ 2%).
The neural networks were thus able to predict these two impor-
tant state variables quite accurately given a short noise sample.
Each operating condition seem to have a unique acoustic signa-
ture which the machine learning algorithm can learn. In other
words, one can indeed hear the state of a combustor.

For each ensemble of trained neural networks, we use the
technique of integrated gradients to produce feature-level attri-
bution plots, which can tell us how much a particular predictor
influenced the prediction for a particular input. For example, the
attribution plot in Figure 8 shows this technique applied to the de-
cay rate prediction ensemble for an input with a decay timescale
of 0.35 seconds. The most prominent feature is the large pos-
itive attributions for the frequency component around the fun-
damental, which is marked in Figure 8 as a grey line labeled
1f. The model has observed that an increased concentration of
acoustic power around the fundamental frequency can be an in-
dication that the system is close to instability. It is intriguing,
however, that almost all of the predictor variables seem to make
meaningful contributions to the final prediction and that if this
information were removed, it would deteriorate the accuracy of
predictions. This implies that for diagnostics to have higher pre-
dictive powers, the data should be considered in its entirety and

FIGURE 7. PLOT OF MEASURED BURNER POWER VS
BURNER POWER PREDICTED BY THE NEURAL NETWORK EN-
SEMBLE ON THE TEST DATA

not examined through a pre-defined lens.
Our argument in favour of considering information from the

entirety of the combustion noise spectrum is bolstered by the per-
mutation feature importance plot (Figure 9). Here, a larger in-
crease in the Root Mean Squared Error when a set of features is
randomized indicates a strong dependence of the model on these
features. We observe that the higher frequency portions of the in-
put spectra have unique information that is independent of other
parts of the spectra and randomizing them increases the RMSE
on the test data by more than 100 percentage, in some cases. The
same does not appear true for the lower frequency bands.

To compare our technique to those in the literature, the Hurst
exponent and the decay of autocorrelation amplitude are com-
puted for noise samples from each operating condition. While
the Hurst exponent has a rough negative correlation with the
measured decay rates, falling as the decay timescales grow, the
relationship is very noisy (Figure 10). This means that if the
Hurst exponent were to be used to forecast instabilities for our
combustors, there would be many false alarms, which is clearly
undesirable.

The same is found for the autocorrelation decay (see Figure
11), which also becomes close to zero, as expected, at the edge
of instability. However, it also approaches zero for several op-
erating points at which the combustor is very stable, making it
somewhat unreliable as a prognostic for instability. While these
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FIGURE 8. TOP: NORMALIZED POWER SPECTRUM OF A
NOISE SAMPLE CORRESPONDING TO A 0.35 SECOND DE-
CAY TIMESCALE (CLOSE TO INSTABILITY) BOTTOM: INTE-
GRATED GRADIENTS ATTRIBUTION PLOT FOR THIS POWER
SPECTRUM

measures are attractive because they do not need to be trained
on extensive experimental data, they also seem to have limited
predictive power in our experiments.

CONCLUSIONS
We demonstrate that Bayesian ensembles of neural net-

works, a probabilistic machine learning algorithm, can be used
to model relationships between measured combustion noise and
the stability margins or operating conditions of a lab-scale tur-
bulent combustor. We can estimate the decay rate of acoustic
pulses, the power and the equivalence ratio from a single 300
millisecond sample of the combustor’s radiated noise over a wide
range of operating conditions. Not only are these estimates rea-

FIGURE 9. PERMUTATION FEATURE IMPORTANCE PLOT
FOR DECAY TIMESCALE PREDICTION

FIGURE 10. PLOT OF GENERALIZED HURST EXPONENT H2
VS DECAY TIMESCALE
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FIGURE 11. PLOT OF AUTOCORRELATION DECAY VS DE-
CAY TIMESCALE

sonably accurate, but they contain principled estimates of un-
certainty. This means that the model has the wisdom to “know
what it doesn’t know” and this is reflected in higher uncertainties
when a provided input is too different from those on which it has
been trained. With Integrated Gradients, we discern which fea-
tures in the input spectra drive the networks towards a particular
prediction, making our technique interpretable. We compare our
approach with two precursors of thermoacoustic instability from
the literature: the Hurst exponent and the autocorrelation decay.
While these broadly behave as expected, their relationship to the
measured decay rates was noisy.

This study shows that a Bayesian ensemble of neural net-
works trained on a particular combustor is better at discerning
the onset of thermoacoustic instability than are traditional mea-
sures based on the Hurst exponent and the autocorrelation decay.
This shows that important information is lost when data is fil-
tered through the traditional methods. The good agreement be-
tween predicted and measured values shown in Figures 5, 6 and 7
shows that each operating point has a distinctive noise, which can
be learned by the ensemble. It is worth mentioning, of course,
that this model is machine-specific and will not generalize to a
different machine. In an industrial setting, however, this draw-
back is mitigated by the fact that there are only a few combustor
designs and a lot of data for each combustor.

This work highlights the promise of building robust real-

time early warning systems for instabilities such as thermoacous-
tic oscillations using combustion noise data. It also shows how
combustion noise can predict the power and equivalence ratio
of the combustor and thus validate sensor measurements without
any additional investment in hardware. We plan to build on this
work and apply these tools to data from larger scale and more
industrially relevant systems such as an annular combustor. We
also realize that our Bayesian machine learning techniques may
be used to fuse data from multiple sensors, not just a single pres-
sure measurement, to build even more informative diagnostics.
Finally, we seek to address the issue of machine-specificity in
our machine learning models by using techniques from transfer
learning to build machine-invariant diagnostic tools, which will
generalize better to new devices.
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