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ABSTRACT
In this study we investigate the heat release response to

forced harmonic velocity fluctuations of a bluff body dump com-
bustor. We use the kinematic G-equation as a low-order model
for the flame and heat release dynamics. The geometry con-
sidered is based on an experimental setup developed by R. Bal-
achandran and widely investigated in the literature, and we look
for a qualitative comparison with experimental and numerical
results. We model the flow field dynamics adapting the well-
known travelling wave model, which was originally developed
for conical flames, to the case of a bluff-body stabilized flame in
a non-uniform mean flow field. We impose velocity fluctuations
at the dump plane at various frequencies and amplitudes and we
integrate the nonlinear flame and heat release dynamics. Results
show that the model qualitatively reproduces the kinematic be-
haviour observed in the experiments, although some major quan-
titative differences are found. We conclude by discussing our re-
sults, and adjustments that could be introduced in future in the
low-order model in order to improve it.

NOMENCLATURE
G Scalar field
G = 0 Flame front
uuu Flow field
sL Flame speed
s0

L Unstretched flame speed
L Markstein length

∗Email: ao352@cam.ac.uk. Address all correspondence to this author.

n̂nn Flame normal
κ Flame curvature
φ Equivalence ratio
· Mean quantities
·′ Fluctuating quantities
f Forcing frequency
A Forcing amplitude
Q Total heat release
F Flame Describing Function

INTRODUCTION
Low-order modelling is very important in thermoacoustics.

Although it relies on radical (but physically-based) approxima-
tions in the flame-flow-acoustic coupling, it allows for a huge
reduction of the degrees of freedom needed to describe the ther-
moacoustic interaction. As the computational cost required to
integrate the system is highly reduced, low-order models can be
used to investigate a large variety of parameters and gain insight
into the physical mechanisms that cause thermoacoustic oscilla-
tions to arise.

For premixed flames, the kinematic G-equation is a com-
mon model used to determine the position and evolution of a
thin flame front, as well as the amount of heat released by the
flame. In the linear limit, transfer functions of conical and V
shaped flames to harmonic velocity and heat release fluctuations
have been evaluated analytically for a variety of underlying flow
fields [1, 2]. In particular, a travelling wave model for flow per-
turbations has been shown to accurately reproduce the flow-flame
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interaction. Also, transfer functions of heat release fluctuations
to harmonic velocity disturbances for these flame shapes have
been proven to match experimental results [3]. In the nonlin-
ear regime, 2-dimensional tent and axisymmetric conical flames
have been investigated with a variety of tools both in the fre-
quency and time domain. Frequency domain analyses are based
on the Flame Describing Function [4,5], and allow for the predic-
tion of frequencies and amplitudes of oscillations when the oscil-
lations are associated with a single thermoacoustic mode. Time
domain analyses allow for a more extensive investigation of ther-
moacoustic systems, and phenomena linked to the nonlinear dy-
namical nature of the system, such as period-doubling, secondary
Hopf bifurcations, and routes to chaos, can be observed [6, 7, 8].

In this study, we extend the models derived for conical
flames to a more realistic combustor configuration. The com-
bustor we investigate is a dump combustor which has been de-
veloped by Balachandran [9], and is shown in Figure 1. As the
experiments performed on this setup represent one of the first
set of measurements of forced turbulent flames in the nonlinear
regime, low-order and CFD simulations of this rig have already
been performed. In [10] a G-equation based low-order model has
been developed. However, in that study the flow field was treated
as a potential flow generated by a pulsating spherical source up-
stream of the bluff body. This does not include the characteristic
formation of vortices at the slot and their roll up. Also, each side
of the flame was treated explicitly as a single-valued function in
one of the coordinates; this condition is not necessarily satisfied
if the flame shape becomes very wrinkled. More accurate numer-
ical simulations based on unsteady Reynolds-averaged Navier–
Stokes (URANS) models were performed by [11, 12].

Our goal is to develop a low-order model based on the fully
implicit G-equation that describes the flame-flow interaction in
this configuration. The implicit formulation naturally includes
the possibility for the flame to assume configurations that are
not necessarily single-valued in any simple coordinate system.
The flame is stabilized by a bluff body, and, although it resem-
bles the structure of a V -flame, it differs from it in the fact that
the reactants are enclosed between inner and outer flame sur-
faces, which are assumed to be axisymmetric. The flame mean
shape and evolution are strongly affected by the interaction of
the flow with the walls and the presence of recirculation zones
in the combustion chamber (see Figure 1). Here, we propose a
flow model which is based on experimental and numerical obser-
vations of the acoustically forced flow field. Then, we perform
a qualitative comparison between the forced response of flame
and heat release dynamics of our model and results obtained in
previous studies. We then discuss our results and comment on
how our low-order model could be improved in a future work.
Once a satisfactory agreement with the realistic forced response
is achieved, the flame-flow model can be coupled with a linear
acoustic network as in [8], to obtain a flame-acoustic feedback
loop and have a complete low-order thermoacoustic model able

FIGURE 1: SCHEMATIC OF THE BLUFF-BODY COMBUS-
TOR RIG DEVELOPED BY [9]. AIR AND FUEL ARE
PREMIXED FAR UPSTREAM OF THE DUMP PLANE. A
SCHEMATIC OF THE FLOW FIELD IN THE COMBUSTION
ZONE IS SHOWN.

to predict frequencies and amplitudes of oscillations both in the
frequency and time domain with a small computational cost.

MODELLING
In this section we describe in detail the low-order model and

our assumptions. The main concept is to first obtain a mean flow
representative of the geometry under consideration and freeze
it, thus solving only for the linearized acoustic equations which
induce fluctuations in the mean flow. As a consequence, the full
Navier–Stokes equations need to be solved only once, for the
mean flow, greatly reducing the computational cost needed. The
geometry we consider is axisymmetric, and we will therefore use
cylindrical polar coordinates.

Flow Field
We decompose the flow field uuu into a mean component uuu

and a fluctuation uuu′. The latter is not necessarily small, as we
will perform a nonlinear analysis. In the literature, most low-
order analyses involving a kinematic description of the flame as-
sume the mean flow to be uniform in the axial direction, and zero
in the radial and azimuthal components. However, for the com-
bustor we are modelling, we cannot make this assumption: the
presence of a conical bluff-body just upstream the combustion
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FIGURE 2: AVERAGED URANS FLOW FIELD COMPO-
NENTS IN THE COMBUSTION ZONE. SOLID THICK
LINES INDICATE WALLS. THE DASHED LINES INDI-
CATE THE CENTERLINE (LEFT BOUNDARIES) AND THE
STREAMLINE r = ρs(z) THAT PASSES THROUGH THE
SLOT MIDPOINT (ONLY IN THE RIGHT PANEL).

zone introduces a strong radial component of the flow at the in-
let, creating a side recirculation zone at the dump plane. Also,
the wake induced by the bluff body forms a large central recircu-
lation zone. These recirculation zones guarantee the flame stabi-
lization, as they promote flame anchoring at the dump plane, and
also greatly affect the flame’s shape and dynamics.

On account for this, we want to use a realistic mean flow,
i.e., a mean flow that accurately describes the location of the re-
circulation zones. This can be obtained solving the Reynolds-
averaged Navier–Stokes (RANS) equations in the enclosed do-
main of Figure 1. The mean flow we use in the following anal-
ysis has been obtained by time-averaging unsteady RANS sim-
ulations performed by Armitage et al. and described in [11].
The radial (ur) and axial (uz) components of the averaged veloc-
ity field are shown in Figure 2, and the azimuthal component is
zero, because we are considering a perfectly axisymmetric con-
figuration.

On top of the mean flow, fluctuations develop when the sys-
tem is acoustically forced by a loudspeaker, or when a thermoa-
coustic oscillation arises. Experimental cold flow smoke visu-
alizations have shown that acoustic fluctuations cause the for-
mation of a pair of counter rotating vortices in the inner and
outer sides of the flame (one in each recirculation zone) [9]. The
vortices are transported downstream with a characteristic veloc-
ity, the convection speed, causing flame wrinkling and conse-
quent heat release fluctuations. The scenario is similar to the
one observed for conical flames: in that case, oscillations are ax-

isymmetric with respect to the centerline, and it has been shown
that an axial developing travelling wave velocity model, with ra-
dial fluctuations computed by means of mass conservation, al-
lows for a realistic description of the flame-flow coupling mech-
anism [1, 2, 3].

Mimicking this description, we want to generate a fluctuat-
ing flow field which is convected axially with a certain convec-
tion speed and generates vorticity in the inner and outer sides of
the flame. For the axial component, we impose acoustic velocity
fluctuations at the inlet, and we convect them downstream. For
the convection, we use as a reference velocity the axial velocity
of the streamline r = ρs(z) that passes through the centre of the
slot (see Figure 2). This assumes that axial fluctuations do not
vary in the radial direction. Finally, we solve for mass conserva-
tion to obtain radial fluctuations. We want these oscillations to
have opposite sign on the two sides of the flame, in order to em-
ulate the formation of counter rotating vortices. This is achieved
by imposing radial fluctuations to be zero along the streamline
r = ρs(z). Summarizing, we solve

∂u′z
∂ t

+uz (ρs (z) ,z)
1
K

∂u′z
∂ z

= 0, u′z (z, t)|z=0 = u′ac(t) (1)

for the convection, and

1
r

∂ (r u′r)
∂ r

+
∂u′z
∂ z

= 0, u′r (r,z, t)|r=ρs(z) = 0 (2)

for mass conservation. The parameter K introduced in Eq. (1)
is the ratio between the mean and convection speeds, which in
general may not be equal to 1 [2, 13]. In the following, we fix
K = 1.5; this particular choice for K is discussed in the Convec-
tion Speed section.

As we have assumed that axial fluctuations are not a func-
tion of the radial direction, Eq. (2) can be solved yielding an
expression for radial fluctuations, which reads:

u′r(r,z, t) =−
1
2

∂u′z
∂ z

r
(

1− ρ2
s (z)
r2

)
. (3)

Note that, with this model, radial fluctuations diverge when ap-
proaching the centerline r = 0. However, because we use a kine-
matic equation for the dynamics of the flame (see next section),
we need to evaluate the velocity field only around the flame front,
which is always distant from the centerline, and the use of Eq. (3)
is justified.

Flame Model
We use the kinematic G-equation to describe the flame and

heat release dynamics. We define a field G whose level set G = 0
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identifies the flame surface, which separates reactants (G < 0)
from products (G > 0). The flame front evolves according to the
transport equation [14]:

∂G
∂ t

+uuu ·∇G = sL |∇G| . (4)

Aside for its sign, the G-field away from the zero contour line
has no physical meaning, and we define it as a signed distance
function. We define the zero level set line implicitly, i.e., as
G(r,z, t) = 0, without assuming that the flame is single-valued
in one of the two coordinates as is done in [2,10]. This allows us
to naturally describe topological changes in the solution, which
occur when pocket of fuels detach from the flame’s main body,
and to be able to describe very wrinkled flame shapes, which in
general cannot be found with an explicit treatment of the flame
front. Topological changes and highly wrinkled structure are the
main features of this flame, as can be observed in Figures 5 and
6, and need to be accounted for. In Eq. (4) uuu = uuu+uuu′ is the un-
derlying flow field and sL the flame speed. The flame speed is in
general a function of the equivalence ratio, turbulence intensity,
and local stretch effects. In this study, we consider fully pre-
mixed, laminar flames. The equivalence ratio φ is used to define
the flame speed of the laminar flat flame sheet, which is given by
the empirical relation:

s0
L(φ) = Aφ

Be−C(φ−D)2
. (5)

The fuel we consider is an air-ethylene gaseous mixture, for
which the coefficients in Eq. (5) are given by A = 1.32176,
B = 3.11023, C = 1.72307, D = 0.36196 [11]. We consider a
uniform equivalence ratio φ = 0.65, yielding s0

L = 0.3 m/s. Cor-
rections to the unstretched flame speed are due to curvature ef-
fects, and are typically accounted for by [15]:

sL = s0
L (1−L κ) , (6)

where L is the Markstein length and κ = ∇ · n̂nn =−∇ · ∇G
|∇G| the

flame curvature. We fix L = 1.2 ·10−3 m; this value is consis-
tent with the Markstein numbers which have been used in similar
studies on the conical flame modelled with the G-equation [7,8].
However, Eq. (6) is a linear correction to the flame speed with
respect to the local curvature. Looking at the flame shapes that
were observed experimentally and numerically, we expect to find
very wrinkled flame structures and the formation of pinch-offs.
When a pinch-off forms, the flame becomes cuspy and the local
curvature can be very high: higher-order stretch corrections are
needed. Other studies [16,17] have addressed the question of de-
veloping nonlinear models for the influence of highly stretched

−6 −3 0 3 6
0

0.5

1

1.5

2

Lκ

s
L

[m
/
s]

 

 

Linear model

Nonlinear model

FIGURE 3: NONLINEAR MODEL ADOPTED FOR THE
FLAME SPEED CURVATURE DEPENDENCE FOR s0

L = 0.3.
HIGH-ORDER TERMS DECREASE THE CURVATURE’S IN-
FLUENCE ON THE FLAME SPEED.

flame sheets on the flame speed. We shall adopt one of the non-
linear models they have proposed, which reads:

sL(κ) :


(

sL
s0
L

)2
log sL

s0
L
=−L κ κ ≤ 1

2L e

sL = s0
Le−

1
2 κ > 1

2L e

, (7)

and is plotted in Figure 3. In Eq. 7 the flame speed sL is defined
implicitly as a function of the curvature κ .

Expanding Eq. (7) around sL = s0
L (i.e., small curvature)

yields:

κ(sL)≈−
1
L

[
κ|sL=s0

L
+

dκ

dsL

∣∣∣∣
sL=s0

L

(
sL− s0

L
)]

=

=− 1
L

sL− s0
L

s0
L

, (8)

showing that in this limit we recover the linear model (6). The
saturation in Eq. (7) for κ > 1/(2L e) is necessary to keep the
flame speed single-valued with respect to the curvature. Nev-
ertheless, it is unlikely that curvature values will lie within this
range because premixed flames propagate normal to themselves
and cusps form pointing towards the products [18]. Large posi-
tive curvature values would indicate that a cusp has formed point-
ing towards the reactants, which is unlikely to arise and can be
checked afterwards. Adopting the nonlinear model (7), the influ-
ence that the curvature has on the flame speed is reduced for very
wrinkled flame sheets.
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FIGURE 4: MEAN FLAME SHAPE CONTOUR G = 0 (RED
LINE) AND MEAN FLOW VECTOR PLOT FOR φ = 0.65,
M = 0.015.

Numerical Implementation and Mean Flame Shape
To numerically integrate Eq. (4) we define the following set

of non-dimensional variables:

t∗ = t
ure f

H
uuu∗ =

uuu
ure f

s∗L =
sL

ure f

z∗ =
z
H

r∗ = β
r
H

M =
L

H

, (9)

where β = H/D, H and D are the enclosure height and the di-
ameter of the bluff body respectively (see Figure 1), and ure f is
a reference speed chosen to be the one at the slot midpoint. In
contrast to the G-equation notation widespread in the literature,
in which the stretch parameter β represents the flame’s aspect
ratio [2, 6], here β does not have a particular physical meaning
and is just a geometrical parameter. This is because the mean
flow is non-uniform and therefore we cannot derive an analytical
expression that relates the flame’s aspect ratio to the flame speed.

Setting H = 80 mm, D = 25 mm, and ure f = 10 m/s, we
fully determine the non-dimensional variables in (9). The nu-
merical method we use to integrate Eq. (4) is a well-established
technique for the integration of level sets, the Narrow Band Level
Set Method, described by [19]. Details on our numerical imple-
mentation can be found in [20, 6, 7, 8].

Figure 4 shows the G-field zero level set obtained by set-
ting the acoustic fluctuations u′ac = 0 in Eq. (1), thus solving the

stationary problem:

βur
∗ ∂G

∂ r∗
+uz

∗ ∂G
∂ z∗

= s∗L(κ)

√(
β

∂G
∂ r∗

)2

+

(
∂G
∂ z∗

)2

. (10)

The steady flame shape compares favourably with the shapes that
have been computed numerically by RANS simulations [11,12].
This steady solution is used as an initial condition in the follow-
ing analysis.

FORCED ACOUSTIC RESPONSE
For the enclosure length we have considered (H = 80 mm),

the system is thermoacoustically stable. Consequently we inves-
tigate the forced (rather than self-excited) response of the sys-
tem to axial flow oscillations. This will allow us to compare
the unsteady flame structures and heat release response predicted
by the low-order model with the ones observed experiments and
URANS simulations.

We force the system by imposing velocity fluctuations of
amplitude A = [0.1 , 3.0] m/s and frequency f = [40 , 500] Hz at
the inlet of the domain, i.e., by setting the boundary condition of
Eq. (1) to

u′ac
∗
(t∗) = ε sin(2π St t∗) , (11)

where we have defined the non-dimensional amplitude of forcing
ε = A/ure f , and the Strouhal number St = f H/ure f .

We numerically integrate the system forward in time for a
time sufficient to reach the steady-state response and compute a
few limit cycles on it.

Qualitative Comparison
As our model is low-order, we do not expect a quantitative

agreement with the experimental results. We are nevertheless
interested in a qualitative comparison, in order to understand
whether the model is capturing the main physical features of the
system.

We focus the discussion on the two cases forced at a fre-
quency St = 1.28 ( f = 160 Hz) and amplitudes ε = 0.1,0.25. In
Figures 5 and 6, we compare our instantaneous flame fronts and
velocity vector fields with those of Armitage et al.’s URANS
simulations1 [11] at three phase angles over a forced cycle. A
comparison with the simulations is easier, because we can com-
pare the flame front G=0 from our simulations with the contour
lines of URANS snapshots corresponding to the c = 0.5 iso-
contour of the progress variable, which is a good indicator of
the flame front position. Experimental results only provide OH
chemiluminescence fields, which are difficult to compare with
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(a) ϕcycle = π/6

(b) ϕcycle = 3π/6

(c) ϕcycle = 5π/6

FIGURE 5: COMPARISON BETWEEN (LEFT) URANS AND
(RIGHT) LOW-ORDER MODEL FLAME SHAPES AND
FLOW FIELDS OVER A FORCING CYCLE WITH St = 1.28,
ε = 0.1.

(a) ϕcycle = π/6

(b) ϕcycle = 3π/6

(c) ϕcycle = 5π/6

FIGURE 6: COMPARISON BETWEEN (LEFT) URANS AND
(RIGHT) LOW-ORDER MODEL FLAME SHAPES AND
FLOW FIELDS OVER A FORCING CYCLE WITH St = 1.28,
ε = 0.25.
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the G-field, because the latter has no physical meaning away
from the flame surface. An indirect comparison with the experi-
ments can be found in [11].

At small forcing amplitudes (Figure 5), the intensity of the
vortices is fairly small, and the flame tends to be long, under-
going a severe stretching. This eventually creates a large pinch-
off which detaches from the flame far downstream and is then
advected while burning; this large pocket of reactants does not
burn completely before exiting the computational domain, mean-
ing that part of the heat release is not accounted for. However,
the latter problem is found also in DNS simulations and in the
experiments, where the domain of computation of heat release
is limited by the camera window for the OH chemiluminescence
measurements.

At higher amplitudes (Figure 6), the flame structure over a
cycle is very different. As the strength of the vortices is higher,
the flame pinches off at a shorter axial distance, and as a con-
sequence the flame is smaller on average. Also, the roll up of
the vortices causes the formation of a characteristic mushroom-
shape at the top of the flame, which we capture well. On the
other hand, there are a few features that we cannot describe, such
as the flame’s impingement at the wall, which is responsible for
some differences in the flame front shapes. Also, we note that
the flames evaluated with the low-order model tend to be shorter
than URANS flames. This is a common feature of all our sim-
ulations, and is probably due to the fact that we are not mod-
elling gas expansion across the flame. The flame average length
could be adjusted by varying the unstretched flame speed s0

L or
the equivalence ratio as in Eq. (5). Also, we recall that the flow
field model has to be valid only close to the flame surface, and
no comparison should be sought far away from the G = 0 lines.

Although improvements are possible, we find that the low-
order flame-flow interaction model gives a reasonable descrip-
tion of the main kinematic features of the flame front, and it rep-
resents a significant improvement in the description of this type
of flames respect to previous models involving the G-equations,
such as the one presented in [10].

Heat Release Response
The heat release response is computed by calculating the

amount of fuel burned at every instant in the domain, by

Q = 2πρhr

∫ R

0

∫ H

0
sL(κ)

√(
∂G
∂ r

)2
+

(
∂G
∂ z

)2
δ (G)r dr dz, (12)

where δ is the Dirac delta function. The non-dimensional heat
release fluctuations are defined by q′ = (Q−Q)/Q, where Q is
the heat release averaged over a forcing cycle.

The integrated heat release over a forced cycle with
St = 1.28 and ε = 0.1 is shown in Figure 7. The heat release

1Reprinted from [11], with permission from Elsevier.
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FIGURE 7: HEAT RELEASE RESPONSE OVER A FORCED
CYCLE WITH St = 1.28 AND ε = 0.1. FLAME FRONT
SNAPSHOTS CORRESPONDING TO KEY MOMENTS IN
THE HEAT RELEASE RESPONSE.

signal is strongly non-harmonic, showing that that heat release is
a strongly nonlinear function of the imposed velocity. The am-
plitude of heat release oscillations is greater than the amplitude
of the forcing, meaning that the gain of the system exceeds 1,
and the two oscillations are about π/2 out of phase.

A few key points of the heat release response have been
highlighted in Figure 7. Point 1) corresponds to the absolute
maximum of the heat release response, and is one of the cusps
in the signal. To gain insight into the physical causes of the ap-
pearance of sharp peaks, we have plotted in the corresponding
bottom panel of Figure 7 the flame front at the same instant. The
main body of the flame is quite stretched, and there is a pocket of
fuel, which had been released during the previous cycle, that is
exiting the domain. On closer inspection, one can see that, at the
instant under consideration, this pocket of fuel is breaking into
two parts, which means that the flame has just pinched off. A
pinch-off creates a discontinuity in the flame shape, and the local
flame curvature close to the pinch-off location suddenly becomes
highly negative. Thus, according to Eq. (7), the local flame speed
becomes higher. This has two effects:

a. from Eq. (12) we see that the flame speed directly enters
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into the evaluation of heat release fluctuations. Therefore,
it is expected that the moment at which the flame pinches
off corresponds to an instantaneously high heat release re-
sponse;

b. at the same time, a higher flame speed increases the rate of
kinematic restoration (kinematic restoration is the process
that smooths out the flame’s wrinkles, and it is due to the fact
that the flame propagates normal to itself [18]). As a conse-
quence, the cusps formed on the flame front are smoothed
out quickly, decreasing the magnitude of curvature correc-
tions and destroying flame surface area. Because both these
effects have a negative impact on the total heat released by
the flame, a rapid decrease of q′ is expected after a pinch-off.

This is consistent with our observations. The same features just
discussed are observed also in the second peak of the heat re-
lease time series, at point 2), where the main body of the flame
undergoes a pinch-off. Finally, point 3) is the absolute minimum
of q′, as it corresponds to a moment in which the flame is short,
and cusps on the flame surface have been smoothed out by kine-
matic restoration. From this instant on, the flame will elongate,
increasing flame surface and thus heat release, until point 1) is
reached again and the cycle restarts.

These arguments suggest that, for this particular flame’s
structure, the formation of pinch-offs has an important role in the
heat release response, because it induces high amplitude fluctu-
ations and the formation of cusps in the time-signal, which en-
hance nonlinear effects. Note that this effect cannot be observed
in the simpler configuration of a conical flame [7, 8]. For coni-
cal flames, pinch-offs occur at the centerline r = 0: because the
flame is axisymmetric, the contribution of a flame element to the
heat release is proportional to the radial distance (see Eq. (12)),
and even if the local flame structure is highly wrinkled, its weight
on the evaluation of the heat release is negligible. On the other
hand, for the flame under consideration in this study, pinch-offs
occur at a large radial distances, and provide large contributions
to the integration of total heat release.

Flame Describing Function Having integrated the
forced response of heat release to velocity fluctuations, we can
evaluate the Flame Describing Function (FDF) for this flame-
flow configuration. The FDF is evaluated by extracting the heat
released at the forcing frequency q1, neglecting higher harmon-
ics, and is calculated by:

F (St,ε) = G1 (St,ε)eiφ1(St,ε), (13)

where i is the imaginary unit, G1 (St,ε) =
∣∣∣∣ q̂1(St,ε)

ε

∣∣∣∣ and φ1 (St,ε)

are respectively the gain and phase of the heat release first har-
monic component to inlet velocity fluctuations.
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FIGURE 8: (a): HEAT RELEASE RESPONSE OVER A
FORCED CYCLE WITH St = 1.28 AND ε = 0.01. THE
CONTRIBUTION OF THE FIRST HARMONIC IS HIGH-
LIGHTED. (b): PSD OF VELOCITY AND HEAT RELEASE
FLUCTUATIONS.

Figure 8 (a) shows the heat release signal (and its first har-
monic component) when the system is forced at 160 Hz with the
smallest amplitude we have considered, ε = 0.01: although the
forcing amplitude is small, it is sufficient to induce the forma-
tion of pinch-offs, which is a nonlinear effect. This causes heat
release fluctuations to have a very large amplitude, and the sys-
tem’s gain exceeds 1 by a large amount. Note that in experiments
and URANS simulations the system response is linear for this
forcing amplitude; this suggests the the low-order model is too
nonlinear, and corrections should be done to prevent the forma-
tion of pinch-offs at small forcing amplitudes. The presence of
cusps in the heat release signals causes higher harmonics to have
large contributions. The PSD plot of heat release fluctuations in
Figure 8 (b) shows how strong the contribution of higher harmon-
ics is even at this small forcing amplitude. Thus, if we want to
use this FDF in a thermoacoustic feedback loop, we must assume
that higher harmonics in the heat release are filtered out by the
acoustic transfer function, which has to act as a strong low-pass
for the feedback loop analysis to work (this assumption is not re-
quired if one uses time-domain techniques such as continuation
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FIGURE 9: FDF GAIN AND PHASE AS A FUNCTION
OF THE FORCING AMPLITUDE AT THE FREQUENCIES
St = 0.48, 1.28, 2.56. THICK LINES CORRESPOND TO THE
LOW-ORDER MODEL RESULTS, CIRCLES TO EXPERI-
MENTAL MEASUREMENTS.

analysis [7, 8]).
Figure 9 shows the FDF amplitude dependence for three

forcing frequencies. As discussed earlier, the phase is affected
by the convection speed value we have chosen, and will not be
further discussed.

For all the frequencies we have considered, the gain shows
an overall monotonical behaviour with the amplitude, which is
in agreement with experimental measurements. At small ampli-
tudes the gain exceeds the unitary value for all the frequencies
shown. This is expected (to some extent) because of the simi-
larity between this flame shape and V shaped flames [1, 3]. In
the linear limit, we find that the gain increases with the forc-
ing frequency, reaches a maximum value at a forcing of 160 Hz,
and then decreases for higher frequencies; the same feature was
observed in experimental and URANS investigations [9, 11, 12].
By the linear limit we mean the smallest forcing amplitude we
have considered, ε = 0.01. Nevertheless, as we have shown that
pinch-offs can form at this amplitude, inducing nonlinear effects,
the behaviour of the system in the linear limit is not properly

characterised, and simulations with even smaller forcing ampli-
tudes need to be performed, or the contribution of pinch-offs on
the heat release has to be reduced.

We note that the gain values we find are much higher than
those of the real system, especially in the low amplitude limit.
The gain reaches a maximum value of about 8, against the max-
imum value of 3 found in experiments at the same frequency.
Excluding the influence of pinch-offs on the heat release that we
have already discussed, a second possible explanation for such a
strong overestimation of the gain can be found in the lack of a
turbulence model in the underlying flow field in our equations.
Indeed, in [21, 22] it has been shown that, because of nonlin-
earities in the governing equations, turbulent fluctuations mod-
elled as stochastic fluctuations couple with the forced oscillations
and flame dynamics, affecting the kinematic restoration process,
hence the formation of cusps, the rate at which flames wrinkles
are smoothed out, and the evolution of the heat release.

CONVECTION SPEED
In order to have a qualitatively reasonable comparison be-

tween URANS and low-order simulations in Figures 5 and 6, we
have only looked at the flame’s structures. As it turns out, this re-
sults in a disagreement between the velocity phases of the images
we have compared. For the URANS simulations, the starting
point of the limit cycle corresponds to a minimum in the velocity
fluctuations at the slot; we denote this condition as ϕ0

min. For the
low-order simulations, we find that the phase that allows for a
good comparison of flame fronts does not correspond to ϕ0

min, but
it has a shift ∆ϕ ≈ π/4 rad.

This shift is likely to be caused by our choice for the convec-
tion speed of velocity fluctuations. Indeed, several studies have
shown that this parameter plays a key role in the correct descrip-
tion of the dynamics [2, 13]. In the advection Equation (1) we
have chosen the ratio between the mean and convection velocities
to be K = 1.5. This was based on DNS simulations performed
by [13], which predicted a value of K in the range [1.1 , 2.0]; val-
ues in this range have already been used in other studies [7,6,8].
However, the latter results were obtained for a laminar, conical
flame configuration, and it is not surprising that the value of the
convection speed may significantly vary for a bluff-body stabi-
lized, turbulent flame. We nevertheless used laminar flame re-
sults because of the lack of information on the convection speed
for the dump combustor under investigation when we started this
study. More recently, new experiments have been performed on
the same combustor by [23]. Applying Proper Orthogonal De-
composition (POD) analysis on phase-averaged OH∗ chemilu-
minescence images and computing the Power Spectral Density
(PSD) of the POD time coefficients on self-excited thermoacous-
tic cycles, they have estimated the ratio between the mean flow
and the convection speeds to be in the range K = [0.59 , 0.72].
Unfortunately this information was not available to us when we
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performed the numerical simulations for the calculation of the
FDF. A lower value of K means that fluctuations are advected
downstream with a velocity that on average is higher than that
of the mean flow, whereas in our calculations we have assumed
them to move more slowly. A smaller convection speed corre-
sponds to a larger wavelength between two vortices on the same
side of the flame. This has a direct impact on the phase between
the shedding of the vortices and the flame structure over time,
and thus on the formation of pinch-offs and the heat release phase
with respect to velocity fluctuations. It is worth mentioning that
the convection speed is in general a function of the frequency (as
found by [13]), and the analysis performed by [23] is not exhaus-
tive, as it is performed on self-excited oscillations, which tend to
have a frequency of about 350 Hz, close to the first resonant fre-
quency of the burner.

Having gained knowledge of experimentally determined val-
ues for the convection speed, we have performed some numerical
simulations fixing the amplitude and frequency of inlet oscilla-
tions, and varying the parameter K in the range [0.4,1.5] in steps
of ∆K = 0.1. To quantify the impact of K on the dynamics of the
flame, we show in Figure 10 the gain and phase dependence on
K of the FDF (defined as in Eq. (13)) evaluated at ε = 0.25 and
f = 160 Hz. The phase follows a clear path: it reaches a max-
imum when the convection speed is K = 1 and monotonically
decreases for other values of K. Looking at the phase values for
K = 1.5 (our simulations), and K = 0.6 (experimentally deter-
mined), we observe that we can correct the phase of heat release
fluctuations of about π/6 rad. On the other hand, the gain has an
oscillatory dependence with respect to the convection speed, and
the system’s amplitude response is very sensitive to variations in
K. Nevertheless, these variations are not enough to explain the

strong gain overestimation we have observed in Figure 9.

1 Conclusions
In this study we have developed a low-order model to inves-

tigate the forced response of a bluff-body stabilized dump com-
bustor, with a view to perform low-order analysis on self-excited
oscillations in this combustor in the future. The flame front has
been described by the kinematic G-equation evolving in a non-
uniform flow field, which has been computed with URANS sim-
ulations. We have attempted to extend the classical travelling
wave model that describes the interaction between conical flames
and flows to this configuration. The model has been developed
by analyzing experimentally determined cold flow smoke visual-
izations of the forced system.

The resulting forced dynamics has been investigated by ex-
amining the system’s response over a cycle: although a quanti-
tative comparison cannot be performed because of fundamental
differences between the systems, an acceptable qualitative agree-
ment between URANS and low-order flame shapes is found,
meaning that our model captures the main kinematic features of
the flame surface dynamics, such as the formation of distorted
mushroom-shaped fronts and pinch-offs. We have evaluated the
Flame Describing Function (FDF) to inlet velocity fluctuations,
and shown its amplitude dependence for three forcing frequen-
cies. The dependence of the gain on the amplitude and frequency
qualitatively compares favorably with experimental results, but
we overestimate by a large amount the system’s gain. This can
have two causes. First, we find that pinch-offs form even at fairly
small forcing amplitudes for this flame’s structure, and they have
a major role in the description of the flame and heat release dy-
namics. In particular, because they create cuspy flame fronts,
they lead to large maximum values in the heat release, followed
by a rapid destruction of flame surface. This occurs even if we
have adopted a nonlinear model for the flame speed dependence
on the curvature, which reduces the importance of very wrinkled
flame fronts on the flame dynamics and heat release evaluation.
As a consequence, the amplitude of heat release fluctuations is
enhanced, and peaks in its signal are created, which in turn aug-
ments the heat release nonlinear response. This is a characteristic
of this flame shape, and cannot be observed on conical flames,
where pinch-offs occur at the centerline and have a very small
influence on the heat release evaluation. The second cause of the
gain overestimate is probably due to the lack of a turbulent model
for the flow field, which has a non-negligible impact on the flame
and heat release dynamics.

The level of reliability of the low-order model can be im-
proved. The convection speed of velocity perturbations can be
varied according to the latest experimental results on the ex-
perimental apparatus. Preliminary results show that adjusting
the convection speed to experimentally determined values has a
strong effect on the system gain and phase response. In particu-
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lar, it improves the agreement between the phases of heat release
and velocity fluctuations, but cannot address the overestimation
of the gain. The impact of pinch-offs on the heat release response
can be reduced by varying the value of the Markstein length. Fi-
nally, a stochastic component can be added to the flow field to
emulate turbulence effects. The latter two changes should re-
duce the heat release gain response to velocity fluctuations. The
qualitative agreement obtained so far is encouraging for further
research on this model. If the further modifications proposed in
this paper prove satisfactory, the flame-flow model could then
be used as a reliable, low-cost tool that can be coupled with an
acoustic solver in order to obtain a complete low-order thermoa-
coustic network.
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