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ABSTRACT
In this paper, we develop a linear technique that predicts

how the stability of a thermo-acoustic system changes due to the
action of a generic passive feedback device or a generic change
in the base state. From this, one can calculate the passive de-
vice or base state change that most stabilizes the system. This
theoretical framework, based on adjoint equations, is applied to
two types of Rijke tube. The first contains an electrically-heated
hot wire and the second contains a diffusion flame. Both heat
sources are assumed to be compact so that the acoustic and heat
release models can be decoupled. We find that the most effective
passive control device is an adiabatic mesh placed at the down-
stream end of the Rijke tube. We also investigate the effects of
a second hot wire and a local variation of the cross-sectional
area but find that both affect the frequency more than the growth
rate. This application of adjoint sensitivity analysis opens up
new possibilities for the passive control of thermo-acoustic os-
cillations. For example, the influence of base state changes can
be combined with other constraints, such as that the total heat
release rate remains constant, in order to show how an unstable
thermo-acoustic system should be changed in order to make it
stable.

NOMENCLATURE
S Structural sensitivity tensor
c1,c2 Damping coefficients

∗Address all correspondence to this author.

i Imaginary unit, i2 =−1
X Oxidizer mass fraction
Y Fuel mass fraction
Z Mixture fraction
Zsto Stoichiometric mixture fraction
Pe Péclet number
u Acoustic velocity
p Acoustic pressure
q̇ Heat-release rate divided by β

⊗ Dyadic product
DA Discretized Adjoint
CA Continuous Adjoint
ˆ Eigenfunction or eigenvector

Greek:
χ Direct state vector
Γ Direct matrix
ξ Adjoint state vector
Φ Adjoint matrix
ζ Damping factor
τ Time delay coefficient
β Heat-release parameter
σ Complex eigenvalue, σr + iσi
φ Equivalence ratio
α Non-dimensional fuel slot half width
δk Dirac delta, δk ≡ δ (x− xk)

Subscripts:
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h Heat source
c Passive control device
i Inlet of the diffusion flame
x Oxidizer
y Fuel

Superscripts:
+ Adjoint
∗ Complex-conjugate

INTRODUCTION
In a thermo-acoustic system, such as a flame in a tube, heat

release oscillations couple with acoustic pressure oscillations. If
the heat release is sufficiently in phase with the pressure, these
oscillations grow, sometimes with catastrophic results [1]. Pre-
diction and control of these oscillations is one of the most chal-
lenging questions in the design of gas turbine and rocket engines,
particularly because small changes to systems can sometimes
greatly influence their stability. This paper introduces a tech-
nique that identifies the most influential changes to the system
and determines their effect on stability. It is applied here to two
simple thermo-acoustic systems. When applied to more realis-
tic systems, it will help identify strategies for passive control of
thermo-acoustic oscillations.

The technique is based on adjoint sensitivity analysis, which
was proposed for incompressible flows by Hill [2] and developed
further by Giannetti and Luchini [3]. These authors considered
the influence of a passive feedback device (the structural sensitiv-
ity) but Marquet et al. [4] extended this analysis to consider the
influence of a generic change to the system (the base-state sensi-
tivity). Sipp et al. [5] provide a comprehensive review of sensi-
tivity analysis for incompressible fluids. Chandler et al. [6] ex-
tended this analysis to low Mach number flows in order to model
variable density fluids and flames. The main goal of this paper is
to extend adjoint sensitivity analysis to thermo-acoustic systems,
which has not been attempted before.

The systems studied in this paper are shown in Fig. 1. They
are: a Rijke tube containing an electrically-heated hot wire [7–
9], shown in Fig. 1a; and a Rijke tube heated by a diffusion flame
[10–14], shown in Fig. 1b. Both heat sources are assumed to be
compact so that the acoustic and heat release models can be de-
coupled. Both systems have three base-state parameters in com-
mon: the position of the heat source, xh, the heat-release param-
eter, β , and the acoustic damping, ζ . The electrically-heated
Rijke tube has one further parameter: a time delay, τ , between
velocity fluctuations at the wire and heat-release experienced by
the bulk fluid; [7], [8], [15], [16]. The diffusion flame Rijke tube
has three further parameters, all of which affect the flame shape:
the fuel slot width, quantified by α , the stoichiometric mixture
fraction, Zsto, and the Péclet number, Pe, which is the ratio of
mass diffusion timescale / convection timescale.
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(a) Ducted hot wire

(b) Ducted diffusion flame

FIGURE 1. SCHEMATIC OF THE THERMO-ACOUSTIC SYS-
TEMS UNDER INVESTIGATION. (a) ELECTRICALLY-HEATED
RIJKE TUBE, THE HOT WIRE IS PLACED AT X = Xh; (b) DUCTED
DIFFUSION FLAME: THE FLAME IS SOLVED IN THE 2-D COM-
BUSTION DOMAIN (ξ ,η) AND FORCES THE ACOUSTICS AT
X = Xh.

For the structural sensitivity analysis, we investigate two dif-
ferent feedback mechanisms: a second heat source placed in an-
other location along the duct and a local smooth variation of the
tube cross-sectional area (Fig. 5). For the base-state sensitiv-
ity analysis, we investigate the influence of the parameters that
change the shape of the flame.

The usefulness of this technique is that a single calculation
reveals how the growth rate and frequency of thermo-acoustic
oscillations are affected either by all possible passive control el-
ements in the system (structural sensitivity) or by all possible
changes to its base state (base-state sensitivity). Looking for-
ward, this technique could quickly reveal, for example, the most
important components of an acoustic network, the best position
for an acoustic damper, or the optimal change in the flame shape.
This information could be combined with optimization strategies
involving other constraints, such as geometrical constraints and
a given total heat release rate, to reveal the best passive strategies
for stabilization of a thermo-acoustic system.

ACOUSTIC MODEL
Both thermo-acoustic systems examined in this paper are

horizontal Rijke tubes heated by a compact heat source. They are
modelled by two different space domains: the 1-D acoustic do-
main, in which the flame is regarded as a localized heat-source,
and the 2-D flame domain. The acoustics are modelled in 1-D
because the characteristic acoustic length is much greater than
the duct width. These acoustic vibrations take place on top of a
base flow (or bulk fluid), which, in this model, is constant and
therefore does not enter the governing equations. The base flow
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only establishes some characteristic scales of the problem (see
Appendix A). The dimensionless acoustic equations (called the
direct equations, see [8]) are:

∂u
∂ t

+
∂ p
∂x

= 0, (1)

∂ p
∂ t

+
∂u
∂x

+ζ p−β q̇δh = 0, (2)

where u, p and q̇ are the non-dimensional velocity, pressure
and heat-release rate (scaled by β ). The heat source is placed
at x = xh and forces the acoustics as an impulsive term mod-
elled with the Dirac delta δh ≡ δ (x− xh). The acoustic non-
dimensionalization is reported in Appendix A.

The acoustic system has three control parameters: ζ , which
is the damping; β , which encapsulates all relevant information
about heat release, and xh, which is the position of the heat
source. The relevant control parameters of the heat source are de-
scribed in the next sections. At the ends of the tube, p and ∂u/∂x
are both set to zero, which means that the system cannot dissipate
acoustic energy by doing work on the surroundings. Dissipation
and end losses are modelled with the damping parameter for each
mode j, ζj = c1 j2 + c2

√
j, where c1 and c2 are the damping con-

stants. This simple damping model was used in Balasubramanian
and Sujith [13] based on correlations developed by Matveev [16].

The numerical discretization is performed with the Galerkin
method, choosing as basis functions the natural acoustic modes
of the system, which are not the eigenfunctions of the system
when the heater is present (see Appendix B for further details).
All the following results are obtained by considering 6 acous-
tic modes in the discretization. We checked modal convergence
considering more Galerkin modes. This discretization is conve-
nient for the current study, because it is simple, but it has several
drawbacks. For example, it does not account for the temperature
jump across the flame and it is not readily extendable to complex
acoustic networks. In future work we will combine adjoint sen-
sitivity analysis with an existing acoustic network model [26] in
order to extend it to realistic systems.

HEAT-SOURCE MODELS
The 1-D acoustics is excited by the compact heat source.

Two different compact heat-source models are examined in this
paper: an electrically-heated hot wire and an infinite-rate chem-
istry diffusion flame. In this section these two different models
are briefly described.

Electrically-heated hot wire
A full description of a Rijke tube heated by an electrically-

heated hot wire, shown in Fig. 1a, is given by Juniper [8], based
on the model used by Balasubramanian and Sujith [7]. Only

the dimensionless form is considered here. The heat-release rate
(scaled by β ) is modelled as a nonlinear time-delayed function
of the velocity (Heckl [15], Matveev [16]):

q̇ =

√∣∣∣∣13 +uh(t− τ)

∣∣∣∣−
√(

1
3

)
, (3)

where uh is the non-dimensional acoustic velocity at x = xh. The
time delay between the pressure and heat-release oscillations is
modelled by the constant time delay coefficient, τ . The hot wire
is placed at x = xh. Note that the resulting non-dimensional heat-
release rate is the product β q̇. Here, the heat-release parameter
β encapsulates all relevant information about the hot wire, base-
flow velocity and ambient conditions. By assuming that |uh(t−
τ)| � 1 and τ� 2/N, where N is the number of Galerkin modes
considered for discretization, the nonlinear time-delayed heat-
release term in Eqn. 3 is linearized both in amplitude and time.
This yields

q̇ =

√
3

2

(
uh(t)− τ

∂uh(t)
∂ t

)
. (4)

Infinite-rate chemistry diffusion flame
An infinite-rate chemistry model is used for the unsteady 2-

D co-flow diffusion flame. This assumption implies that the com-
bustion occurs along an infinitely thin surface, where the fuel, Y ,
and the oxidizer, X , are at the stoichiometric ratio. The main
assumptions are: the velocity field of the flame is the acoustic
velocity calculated at the flame position, xh, which is assumed to
be uniform within the 2-D combustion domain; the flame at any
instant is located at the stoichiometric surface; the Lewis number
is 1.

The stoichiometric mass ratio is s = νxWx/νyWy, where
Wx and Wy are the molar mass ([kg/mole]), and νx and νy
([mole/kg]) are the stoichiometric coefficients of the oxidizer
and fuel, respectively. In order to make this problem easier for
numerical treatment, it is useful to define the conservative scalar
variable Z, also known as Schveb-Zel’dovich variable:

Z ≡ Y −X +Xi

Xi +Yi
, (5)

where X is the oxidizer mass fraction divided by νxWx, and Y
is the fuel mass fraction divided by νyWy. The stoichiometric
surface, where the whole reaction occurs, is the locus of points
in which Z assumes the stoichiometric value Zsto = 1/(1+ φ),
where φ ≡ Yi/Xi is the equivalence ratio [17]. The parabolic
partial differential equation governing the mixture fraction Z in
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non-dimensional form is:

∂Z
∂ t

+(1+uh)
∂Z
∂ξ

=
1
Pe

(
∂ 2Z
∂ξ 2 +

∂ 2Z
∂η2

)
, (6)

along with the relevant boundary conditions, Z(ξ = 0,η) = 1
when |η | ≤ α , Z(ξ = 0,η) = 0 when α < |η | ≤ 1, ∂Z

∂η
(ξ ,η =

±1) = 0, and ∂Z
∂ξ

(ξ = Lc,η) = 0.
uh is the acoustic velocity evaluated at the acoustic flame

location, xh, such that |uh| � 1; Pe is the Péclet number, and α is
the non-dimensional fuel slot half width. The non-dimensional
combustion parameters are reported in Appendix A.

The variable Z is split up into two components, Z = Z̄ +
εz, where Z̄ is the analytical steady solution (Appendix C,
Eqn. (30)), and εz is the unsteady field. In the fully non-linear
analysis, where no approximation is made, ε = 1. In the linear
analysis the unsteady component is considered to be very small,
|ε|� 1, so that the higher order term εuh∂ z/∂ξ ∼ 0 is discarded.
The problem linearized about a steady state is therefore:

∂ Z̄
∂ξ
− 1

Pe

(
∂ 2Z̄
∂ξ 2 +

∂ 2Z̄
∂η2

)
= 0, (7)

∂ z
∂ t

+
∂ z
∂ξ
− 1

Pe

(
∂ 2z
∂ξ 2 +

∂ 2z
∂η2

)
+uh

∂ Z̄
∂ξ

= 0. (8)

Importantly, Z̄ has the same boundary condition as Z. The un-
steady component z at the inlet, ξ = 0, must be zero. A detailed
derivation of this equation is given by [11–14].

Heat-release rate In the energy equation (2) the heat-
release rate acts as a forcing term. The total heat-release rate is
given by the integral over the combustion space domain (ξ ,η)
of the total derivative of the sensible enthalpy, namely

Q̇ =
∫

R

d(Tb−Ti)

dt
dξ dη , (9)

where Tb = Ti + Z if Z < Zsto, and Tb = Ti + Zsto (1−Z)/(1−
Zsto) if Z ≥ Zsto. The non-dimensional combustion space do-
main, in which the flame is solved, is R ≡ [0,Lc]× [−1,1]. The
steady heat-release rate depends on whether the flame is closed
(overventilated), Zsto > α , or open (underventilated), Zsto < α .
It is Q̄ = 2α , and Q̄ = 2

(
Zsto

1−Zsto

)
(1−α), respectively. For

both cases, the flame tends to assume constant height (infinite
length) in the limit Zsto → α . Hence, if the flame is open the
length tends to increase if Zsto increases, vice versa if the flame
is closed (Fig. 8a). For the acoustic energy equation (2) we need

to evaluate the fluctuating averaged heat-release rate which with
Galerkin discretization is given by:

q̇≡ Q̇− Q̄ =
∫ Lc

0

∫ 1

−1
θ(Z > Zsto)

(
−1

1−Zsto

)
∂ z
∂ t

dξ dη +uhQ̄.

(10)
where θ(Z > Zsto) is the step function which is 1 in the fuel
side Z > Zsto, and 0 otherwise. We emphasize that the above
expression is valid for both closed and open flames. Numeri-
cal treatment of this flame is outlined in Appendix B and, in
a slightly different formulation, in Balasubramaninan and Su-
jith [13]. Magri and Juniper [14] will contain further details.
The non-dimensionalization of the flame-domain parameters is
reported in Appendix A.

ADJOINT OPERATOR
In this section the adjoint operator is defined. Let Θ be a

partial differential operator of order M acting on the function
f (x1,x2, . . . ,xK , t), where K is the space dimension, such that
Θf (x1,x2, . . . ,xK , t) = 0. We refer to the operator Θ as the direct
operator and the function f as the direct variable. The adjoint
operator Θ+ and adjoint variable f+ are defined via the general-
ized Green’s identity (see Magri and Juniper [9]):

∫ T

0

∫
V

f+∗Θ f − f
(
Θ

+ f+
)∗ dV dt =

=
∫ T

0

∫
S

K

∑
i=1

[
∂

∂xi
Fi
(

f , f+∗
)]

nidSdt + . . .

. . .+
∫

V
Fi
(

f , f+∗
)
|T0 dV. (11)

where i = 1,2, . . . ,K and Fi(f , f+∗) are functions which de-
pend bilinearly on f , f+∗ and their first M−1 derivatives. The
complex-conjugate operation is labelled by ∗. The domain V is
enclosed by the surface S, for which ni are the projections on the
coordinate axis of the unit vector in the direction of the outward
normal to the surface dS. The time interval is T . The adjoint
boundary conditions and initial conditions of the function f+ are
defined as those that make the RHS in Eqn. (11) vanish identi-
cally on S, t = 0 and t = T .

The adjoint equations can either be derived from the con-
tinuous direct equations and then discretized (CA, discretization
of the Continuous Adjoint) or be derived directly from the dis-
cretized direct equations (DA, Discrete Adjoint). For the CA
method, the adjoint equations are derived by integrating the con-
tinuous direct equations by parts and then applying Green’s iden-
tity (11). They are then discretized with the Galerkin method.
For the DA method the adjoint system is simply the negative Her-
mitian of the direct matrix: Φi j =−Γ∗ji [9].
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In Magri and Juniper [9] a comparison between the numer-
ical truncation errors of the two above methods is illustrated.
For the thermo-acoustic systems considered in this paper, the DA
method is more accurate and easier to implement. We use both
the CA and DA method for the first thermo-acoustic system, an
electrically-heated Rijke tube, while we use only the DA method
for the second thermo-acoustic system, a ducted diffusion flame.
However, the continuous adjoint equations CA of the latter sys-
tem will be available in Magri and Juniper [14].

The continuous adjoint equations of the electrically-heated
Rijke tube (1)-(2)-(4) are:

∂u+

∂ t
+

∂ p+

∂x
+

√
3

2
β

(
p+h + τ

∂ p+h
∂ t

)
δh = 0, (12)

∂u+

∂x
+

∂ p+

∂ t
−ζ p+ = 0. (13)

These adjoint equations govern the evolution of the adjoint
variables, which can be regarded as Lagrange multipliers from a
constrained optimization perspective. Hence, u+ is the Lagrange
multiplier of the acoustic momentum equation (1). Physically, it
reveals the locations where the system is most sensitive to a given
force acting on the acoustic momentum. Likewise, p+ is the
Lagrange multiplier of the pressure equation (2)-(4). Physically,
it reveals the locations where the system is most sensitive to a
given heat injection.

OPTIMAL PASSIVE CONTROL VIA ADJOINT STRUC-
TURAL SENSITIVITY

We define a passive device to be an object that causes feed-
back between the state variables and the governing equations at
the position where it is placed. In the language of active control,
the sensor and actuator are co-located and there is a fixed rela-
tionship between the observation (which is derived from the state
variables at that point) and the actuation (the forcing terms in the
governing equations). For example, the flame-holder of an un-lit
afterburner can be thought of as a passive device whose drag ex-
erts a force on the fluid in the opposite direction to the velocity
at that point.

Structural sensitivity to a generic feedback device
By working out the four components of the structural sensi-

tivity tensor, we can calculate the effect of any passive feedback
device and thereby identify the device that is most effective at
changing the frequency or growth rate of the system. In this sec-
tion, the direct and adjoint eigenfunctions are computed by con-
sidering a hot wire as a heat source. The parameters are such that
the first acoustic mode is the most unstable but the analysis can
be repeated for the cases when second or higher modes are most

unstable [9]. An analytical formula for the structural sensitivity
tensor is obtained as follows:

• Consider an eigenvalue problem by inserting the following
transformations into the direct and adjoint equations (1)-(2)-
(4) and (12)-(13):

u(x, t) = û(x,σ)eσt , u+(x, t) = û+(x,σ)e−σ∗t , (14)

p(x, t) = p̂(x,σ)eσt , p+(x, t) = p̂+(x,σ)e−σ∗t . (15)

Consequently, the direct eigenvalue problem is

σ û+
∂ p̂
∂x

= 0, (16)

σ p̂+
∂ û
∂x

+ζ p̂−
√

3
2

β (ûh− τσ ûh)δh = 0. (17)

while the adjoint eigenvalue problem becomes

−σ
∗û++

∂ p̂+

∂x
+

√
3

2
β
(

p̂+h − τσ
∗ p̂+h

)
δh = 0, (18)

−σ
∗ p̂++

∂ û+

∂x
−ζ p̂+ = 0. (19)

• Perturb the direct equations (16)-(17) by a generic, constant,
small, localized feedback mechanism δCδc proportional to
the state variables, where δC is represented by a 2×2 matrix;
• Assume that the perturbation is small enough for the new

thermo-acoustic configuration such that σnew = σ + δσ ,
p̂new = p̂+ δ p̂, ûnew = û+ δ û; where δσ = εσ , δ p̂ = ε p̂,
δ û = ε û with |ε| � 1, and where terms of order ε2 are suffi-
ciently small to be neglected. Therefore only terms∼O(ε1),
or smaller, are retained. Accordingly, the perturbed direct
eigenvalue problem is governed by the following equations

σδ û+
∂δ p̂
∂x

=−δσ û+δC11δcû+δC12δc p̂, (20)

σδ p̂+
∂δ û
∂x
−
√

3
2

β (1−στ)δ ûhδh +ζ δ p̂ =

= δC21δcû+δC22δc p̂−δσ p̂−
√

3
2

βτ ûhδσδh. (21)

• Multiply Eqns. (20)-(21) by û+∗ and p̂+∗ respectively; mul-
tiply the complex-conjugate of the adjoint eigenvalue prob-
lem in Eqns. (12)-(13) by δ û and δ p̂ respectively, and
sum together. By integrating over the duct length (non-
dimensionalized such that it is unitary), we obtain an explicit
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formula for the structural sensitivity tensor Si j = δσ/δCi j,
which is

S≡ δσ

δC
=

[û+∗ p̂+∗]T ⊗ [û p̂]T∫ 1
0(ûû+∗+ p̂p̂+∗)dx+

√
3

2 βτ ûh p̂+∗h

. (22)

The direct and conjugate adjoint eigenfunctions are arranged
as column vectors [û p̂]T and [û+∗ p̂+∗]T , respectively. In gen-
eral, a structural perturbation to the thermo-acoustic operator can
be represented by a 2× 2 tensor which acts on [û p̂]T . Each
component of this structural perturbation tensor quantifies the ef-
fect of a feedback mechanism between the jth eigenfunction and
the ith governing equation. The four components of S quantify
how a feedback mechanism that is proportional to the state vari-
ables affects the growth rate and frequency of the system. They
are shown in figure 2 as a function of x, which is the location
where the passive device (structural perturbation) sits. They are
explained physically below.

Firstly (S11 = ûû+∗) we consider a force in the momentum
equation that is proportional to the velocity at a given point. For
example, this could be the (linearized) drag force about an obsta-
cle in the flow. This type of feedback greatly affects the growth
rate but hardly affects the frequency. It has most influence when
it is at the entrance or exit of the duct. This is because (i) the ve-
locity eigenfunction is maximal there and (ii) the adjoint velocity,
which is a measure of the sensitivity of the momentum equation,
is also maximal there (shown in Magri and Juniper [9]). The
real part of S11 is positive for all values of x, which means that,
whatever value of x is chosen, the growth rate will decrease if
the forcing is in the opposite direction to the velocity. This tells
us that the drag force about an obstacle in the flow will always
stabilize the thermo-acoustic oscillations but is most effective if
placed at the upstream or downstream end of this duct. Further-
more, by inspection of the amplitudes of the black lines in Fig. 2,
we see that this is the most effective passive device.

Secondly (S22 = p̂p̂+∗) we consider a feedback mechanism
that is proportional to the pressure and that forces the pressure
equation. The pressure-coupled heat release described in Chu
[18], which arises in solid rocket engines, is an example of this
type of feedback. For this feedback, the system is most sensitive
around the centre of the duct. As for S11, this feedback greatly
affects the growth rate but hardly affects the frequency, and is
positive for all values of x. If the heat release increases with the
pressure, as it does for most chemical reactions, this feedback
mechanism is destabilizing. But if a fuel could be found with the
opposite behaviour then it would most stabilize the oscillations
if placed at the centre of the duct.

Thirdly (S12 = p̂û+∗) we consider feedback from the pres-
sure into the momentum equation and (S21 = ûp̂+∗) feedback
from the velocity into the pressure equation. These types of
feedback hardly affect the growth rate but greatly affect the fre-
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FIGURE 2. STRUCTURAL SENSITIVITY TENSOR. EACH
COMPONENT QUANTIFIES THE EFFECTS OF A FEEDBACK
MECHANISM ON THE LINEAR GROWTH RATE (SOLID LINE /
LEFT SCALE) AND ANGULAR FREQUENCY (DASHED LINE /
RIGHT SCALE) OF THE OSCILLATIONS. c1 = 0.01, c2 = 0.001,
τ = 0.01, β = 0.39, xh = 0.25.

quency. A control hot wire with τ � 1 causes this type of feed-
back (S21), so this analysis shows that it will be relatively inef-
fective at stabilizing thermo-acoustic oscillations.

Structural sensitivity to a control hot wire
In the previous section, we showed that the components of

the structural sensitivity tell us the effect of any passive con-
trol device, as long as we know how the device affects the flow
around it. In this section, we illustrate this for a second hot wire,
denoted with the subscript c, even though it is a relatively inef-
fective device. We compare the structural sensitivity results with
those calculated using the Rayleigh Index and then demonstrate
numerically that this can re-stabilize an unstable thermo-acoustic
system.

The feedback from the control wire is proportional to the
velocity perturbation and perturbs the pressure equation. The
structural perturbation tensor therefore has only one component:
δC21 = δβc(1−στc). The sensitivity to the presence of a control
hot wire placed at x = xc is given by the following formula

δσ

δβc
=

p̂+∗c ûc (1−στc)∫ 1
0(ûû+∗+ p̂p̂+∗)dx+

√
3

2 βτ ûh p̂+∗h

. (23)

It has long been known that if pressure and heat-release fluc-
tuations are in phase, then acoustic vibrations are encouraged.
More precisely, the Rayleigh criterion [19] states that the en-
ergy of the acoustic field grows over one cycle of oscillation if∮

T
∫
D pq̇ dDdt , exceeds the damping, where D is the flow do-

main and T is the period. It is particularly informative to plot the
spatial distribution of

∮
T

pq̇ dt (24)
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FIGURE 3. TOP FRAMES: STRUCTURAL SENSITIVITY OF
THE GROWTH RATE, Re(δσ/δβc), AND OF THE ANGULAR FRE-
QUENCY, Im(δσ/δβc),WHEN A CONTROL HOT WIRE IS PLACE
AT POSITION xc. BOTTOM FRAMES: RAYLEIGH INDEX FOR A
CONTROL WIRE PLACE AT xc. SYSTEM PARAMETERS AS IN
FIG. 2

which is known as the Rayleigh Index. This reveals the re-
gions of the flow that contribute most to the Rayleigh Crite-
rion and therefore gives insight into the physical mechanisms
that alter the amplitude of the oscillation. To examine the effect
of the control wire, we substitute the approximate expressions
p = p̂exp(σit) and q̇ = ˆ̇qexp(σit) into (24) and integrate over a
period 2π/σi, where σi = Im(σ). (The approximation arises be-
cause the growth rate over the cycle has been ignored.) The real
part of the Rayleigh Index gives the change in the growth rate
and the imaginary part gives the change in the frequency (bottom
frames in Fig. 3). As expected, the sign of the Rayleigh index
matches that of the structural sensitivity (top frames in Fig. 3)
and the shape is similar.

The Rayleigh Index physically explains the effect of adding
the control hot wire to the Rijke tube: for x = 0 to 0.54, the pres-
sure and heat release eigenfunctions are sufficiently in phase that
the contribution to growth over a cycle is positive; for x = 0.54 to
1, they are out of phase so their contribution to growth over a cy-
cle is negative. It is interesting to note that this system becomes
more unstable when the control wire is placed at 0.5 < xc < 0.54.
This is in the second half of the tube and, in the absence of the
first hot wire, a control wire placed here would be stabilizing.
The reason for this is that the main hot wire, at xh, causes the
eigenfunctions to distort from the acoustic modes of the duct. In
particular, the features of the û and p̂ eigenfunctions shift down
the duct, to higher values of x. This shifts downstream the region
in which the control wire is destabilizing.

We demonstrate the suppression of thermo-acoustic oscil-
lations using a control wire placed at the optimal location, as
predicted by the structural sensitivity analysis. We use the pa-
rameters in Fig. 3, which shows that, in order to reduce the
growth rate most effectively, the control wire should be placed
at xc = 0.8. We integrate the nonlinear time-delayed governing
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(a) Time integrat ion of the nonlinear system
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FIGURE 4. STABILIZATION WITH A CONTROL WIRE INTRO-
DUCED AT t = 1000 AND PLACED AT OPTIMAL POSITION xc =

0.8 PREDICTED BY ADJOINT ANALYSIS. SYSTEM PARAME-
TERS AS IN FIG. 2, βc = β/10.

equations (1)-(2)-(3) forward in time with a 4th order Runge-
Kutta algorithm. When the control wire is absent, the growth
rate is σr = 1.91× 10−5 (near the Hopf bifurcation point) and
the angular frequency is σi = 3.309. We set the heat-release pa-
rameter for the control wire to be βc = β/10 = 0.039, which is
small enough to fulfil the linear assumptions. When the control
wire is present, the growth rate is σr =−2.15×10−4 and the an-
gular frequency is σi = 3.292. The difference between these val-
ues matches that predicted by the structural sensitivity analysis,
for which δσ = βc×δσ/δβc ≈ 0.039× (−0.01528−0.425i) =
−5.79×10−4−0.0166i, at xc = 0.8.

Figure 4a shows the pressure as a function of time in the non-
linear simulations. The control wire is introduced at t = 1000.
The behaviour is as predicted: there is stable nonlinear oscilla-
tion until t = 1000 and exponential decay afterwards. Figures 4b-
c show the fast Fourier transform (FFT). These figures confirm
the frequency shift and stabilization predicted by the structural
sensitivity analysis, but at much greater numerical expense.

Structural sensitivity to smooth cross-sectional area
variation

For smooth variations of the cross-sectional area, the non-
dimensional energy equation (2)-(4) can be rewritten [20–23] as

∂ p
∂ t

+
∂u
∂x

+ζ p−
√

3
2

β

(
uh− τ

∂uh

∂ t

)
δh =−u

1
γ

∂γ

∂x
(25)

with γ ≡ A(x)/A0, where A(x) is the area at location x of height
h(x) and A0 is the area at the mouth of the duct of height h0,
as sketched in Fig. 5. If γ varies, the RHS of Eqn. (25) shows
that a change in the area can be interpreted as a forcing term,
proportional to −u, acting on the energy equation. We assume
that the area of the duct is constant except at location x = xc,
where there is a small smooth change in the area. The structural
perturbation is proportional to the acoustic velocity, −uc, and
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FIGURE 5. AN INFINITESIMAL VARIATION OF THE CROSS-
SECTIONAL AREA A(x) OF THE RIJKE TUBE IS REGARDED AS
A LOCALIZED FEEDBACK MECHANISM FOR PASSIVE CON-
TROL.

affects the energy equation, which becomes:

∂ p
∂ t

+
∂u
∂x

+ζ p−
√

3
2

β

(
uh− τ

∂uh

∂ t

)
δh =−uc

1
γ

∂γ

∂x
θc (26)

where θc is 1 at x = xc and zero elsewhere. A “ local smooth
cross-sectional area variation” is defined such that ∂γ/∂xθc is
finite. The structural sensitivity is provided by the negative of
S21 in Eqn. (22). Therefore the eigenvalue drift caused by this
feedback mechanism is δσ = −(∂γ/∂x)S21(1/γ). This means
that where a control hot wire has a stabilizing effect, a positive
change in area in the same location has a destabilizing effect, and
vice versa.

BASE-STATE SENSITIVITY
The structural sensitivity gives the effect of adding a pas-

sive feedback device to the system. The base-state sensitivity
gives the effect of altering the thermo-acoustic system without
adding any passive devices. This is likely to be more interesting
in practice. The base state sensitivity is calculated directly from
the discretized governing equations (the DA method). There are
four stages in this method: (1) calculate the perturbation matrix
δΓ, imposing an arbitrarily small perturbation on the base-state
parameter; (2) calculate the eigenvectors of the direct matrix, Γ,
and adjoint matrix, Φ; (3) apply formula (27) to find the eigen-
value drift; (4) divide the eigenvalue drift by the small pertur-
bation used to produce δΓ at step 1. It can be shown (see for
instance [3]) that the eigenvalue drift due to a perturbation of the
discretized direct system is given by

δσ =
ξ̂ ∗ · (δΓχ̂)

ξ̂ ∗ · χ̂
. (27)

The column vector χ̂ is the eigenvector of the direct matrix Γ,
while ξ̂ is the eigenvector of the adjoint matrix Φi j =−Γ∗ji. Here,
we demonstrate the base state sensitivity for both the hot wire
Rijke tube and the diffusion flame Rijke tube.
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FIG. 2

Electrically-heated hot wire
Top frames of Fig. 6 show how a variation in the heat-release

parameter, β , affects the growth rate, Re(σ), and the angular fre-
quency, Im(σ)≡ ω , for different hot-wire positions, xh. Bottom
frames of Fig. 6 show how a variation in the time-delay coeffi-
cient, τ , affects the same quantities. These are calculated via the
DA method and the result is checked against the exact solution,
which is obtained by finite difference.

We see that small variations in β have a much greater effect
on the frequency than on the growth rate, while small variations
in τ have a much greater effect on the growth rate than on the
frequency. In other words, the growth rate is extremely sensitive
to the time delay in the model. This is a well known result and
the reasons for this are discussed in [9]. Its value here is in the
successful demonstration of the method.

Infinite-rate chemistry diffusion flame
In this section, the base-state sensitivity analysis is used to

calculate how the flame shape affects the growth rate and fre-
quency of the thermo-acoustic oscillations. This is a particu-
larly interesting application because combustion technologists
have some control over the flame shape. In this model, the flame
shape is determined by the Péclet number, Pe, the stoichiometric
mixture fraction, Zsto, and the duct width, α . Here, the heat re-
lease parameter is arbitrarily fixed at β = 0.67/2 and the flame
position at xh = 0.25, at which point this thermo-acoustic sys-
tem is marginally stable when Pe = 35, Zsto = 0.8 and α = 0.35
[24]. Maps of the base-state sensitivity are shown in Fig. 7 with
α = 0.35, which correspond to overventilated (i.e. closed) flames
because Zsto > α . In the left frames, the colourscale shows the
rate of change of growth rate with Zsto (top left) and with Pe (bot-
tom left), as a function of the base-state values of Pe and Zsto. In
the right frames, the colourscale shows the rate of change of the
frequency with Zsto (top right) and with Pe (bottom right). These
have been checked against the exact solutions obtained (expen-
sively) via finite difference and agree to a tolerance of 10−9.
Further details on the parameters used and the numerical treat-
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ment will be available in Magri and Juniper [14].
Figure 7 shows that the stability of the system is much more

sensitive to the stoichiometric mixture fraction, Zsto, than to the
Péclet number. The sensitivities show that, around these oper-
ating points, i) at a given Pe, small increases of δZsto, which
tend to shorten the flame (Fig. 8a), make the system more stable
when the unperturbed flame is sufficiently short (cold colours,
Fig. 7a) and increase the oscillation frequency regardless of the
flame length (Fig. 7b); ii) at a given Zsto, small increases of δPe,
which tend to lengthen the flame (Fig. 8b), make the system more
stable when the flame is long (cold colours, Fig. 7c) but decrease
the angular frequency in any case (Fig. 7d); iii) the thermo-
acoustic system is more sensitive to changes of δZsto but less
sensitive to changes of δPe. Similar results can be derived for
variations of the other three parameters, xh, α , and β . This base-
state sensitivity analysis therefore allows a combustion technol-
ogist to quickly examine the stability of a given model, and how
the stability varies with the parameters of the model, over a wide
range of parameter space. On a cautionary note, the results are of
course only as good as the model from which they are derived.

CONCLUSIONS
The aim of this paper is to extend adjoint sensitivity analy-

sis to thermo-acoustic systems. We consider a Rijke tube con-
taining an electrically-heated wire and a Rijke tube containing a
diffusion flame. By combining information from the direct and
adjoint equations, we predict how the least stable / most unsta-
ble eigenvalue of these thermo-acoustic systems changes when a
generic passive feedback device is introduced. From this we find
that devices that exert a drag force on the fluid have the biggest
effect on the growth rate.

Two physical feedback mechanisms in particular are investi-
gated: a second heat source placed in another location along the
duct (a second hot wire), and a local smooth variation of the tube
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FIGURE 8. FLAME SHAPE, REPRESENTED BY THE STOI-
CHIOMETRIC CURVE, AS A FUNCTION OF Zsto (a) and Pe (b). IN
THE TOP FRAME Pe = 60, IN THE BOTTOM FRAME Zsto = 0.8.

cross-sectional area. We find that these feedback mechanisms
have more effect on the frequency of oscillations than on their
growth rate. For the first of these systems, we verify the pre-
dictions from the adjoint analysis by comparing them with the
results of time-integration of the fully nonlinear system.

In the base-state sensitivity analysis we investigate how tiny
variations in the base-state parameters affect the most unstable
eigenvalue of the system. This reveals how best to change these
parameters in order to stabilize the system and also which base-
state parameters have most influence on the stability. For the
electrically heated Rijke tube we find that i) the system is more
sensitive to small variations of the time-delay coefficient, τ , than
it is to the heat-release term, β ; ii) a change of β is more effec-
tive for control of the frequency, whereas a change in τ is more
effective for control of growth rate. For the diffusion flame Ri-
jke tube close to a Hopf bifurcation, we find that i) the system is
much more sensitive to small fluctuations of the stoichiometric
mixture fraction, δZsto, than to the Péclet number, ii) the growth
rate is very sensitive to small changes of δZsto, and therefore the
flame length, with stabilizing effect when the unperturbed flame
is short.

The sensitivity analysis proposed in this paper has been car-
ried out by linearizing the nonlinear governing equations around
fixed points. Therefore we have studied how to extend the linear
stable region of fixed points by changing some parameters of the
system or introducing passive devices. In future work, we will
apply adjoint Floquet analysis to study the stability and control
of nonlinear self-sustained oscillations by linearizing the equa-
tions around these periodic solutions. We will also examine more
realistic acoustic networks with a state-space implementation of
an acoustic network model [26]. The successful application of
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sensitivity analysis to more realistic thermo-acoustic models will
open up new possibilities for the design of passive control strate-
gies for thermo-acoustic oscillations.

Appendix A: Scale factors for non-dimensionalization
Dimensional quantities are denoted with .̃
The acoustic variables are scaled as: L̃ax = x̃ [m], L̃atac/c̃0 =

t̃ [s], Ũ0u = ũ [m/s], γMp̃0 p = p̃ [Pa]; where L̃a [m] is the length
of the Rijke tube, c̃0 [m/s] the speed of sound in the base flow, Ũ0
[m/s] is the base-flow velocity, p̃0 [Pa] is the base-flow pressure,
γ = c̃p/c̃v and M is the base-flow Mach number. c̃p and c̃v are the
mass heat capacities at constant pressure and constant volume of
the mixture [Jkg−1K−1] , respectively.

In the ducted diffusion flame, the combustion variables are
scaled as: H̃ξ = ξ̃ [m], H̃η = η̃ [m], H̃tc/Ũ0 = t̃ [s], T̃re f T = T̃
[K]; where T̃re f = Q̃h/c̃p, and Q̃h is the heat released by combus-
tion of 1 kg of fuel [Jkg−1]. The combustion time scale has been
chosen exactly as the acoustic time scale, i.e. tac = tc. This is
a good assumption as long as ML̃a/H̃ = 1 (compact flame and
low Mach number assumptions). The non-dimensional length of
the combustion domain along ξ is Lc = L̃c/H̃. The Péclet num-
ber is the ratio between the diffusion and convective time scales,
Pe = Ũ0H̃/D where D is the (constant) mass diffusion coeffi-
cient.

Appendix B: Numerical discretization with Galerkin
method

The partial differential equations are discretized into a set
of ordinary differential equations by picking an orthogonal basis
that matches the boundary conditions. The basis functions are
the eigenfunctions of the undamped acoustic system when the
heater is absent. This procedure, often used in thermo-acoustics,
is also known as the Galerkin method. The acoustic variables are
expressed as:

u(x, t) =
N

∑
j=1

η j(t)cos( jπx), p(x, t) =−
N

∑
j=1

(
η̇ j(t)

jπ

)
sin( jπx).

(28)
We implicitly make use of a zero-Mach number assumption with
the above acoustic discretization. In fact, a compact heat source
causes a jump in the base-state temperature and, accordingly,
the mean quantities. This changes the acoustic impedance and
might have a non-negligible effect on acoustics (for further elab-
oration, see Nicoud and Wieczorek [25] and Magri and Juniper
[14]). These changes in mean quantities is not represented by
the Galerkin expansion we used. Our representation, however,
is sufficiently accurate for our purposes because the heat-release
parameters we used throughout the paper are small.

As far as the diffusion flame is concerned, the variable z is
discretized as follows

z =
M

∑
m=1

N

∑
n=0

cos(nπη)sin
[(

m− 1
2

)
πξ

Lc

]
Gmn(t). (29)

Hence, the discretized thermo-acoustic problem can be arranged
in the state-space representation.

Appendix C: Steady solution of the infinite-rate chem-
istry diffusion flame

The analytical solution of Eqn. (7) with the relevant bound-
ary conditions, obtained via separation of variables, is:

Z̄ = α +
2
π

+∞

∑
n=1

sin(nπα)

n(1+bn)
cos(nπη) [exp(an1ξ )+bn exp(an2ξ )] ,

(30)
where

an1 ≡ Pe
2 −

√
Pe2

4 +n2π2, an2 ≡ Pe
2 +

√
Pe2

4 +n2π2, (31)

bn ≡− an1
an2

e
−2
(√

Pe2
4 +n2π2

)
Lc
. (32)

Note that if Lc� 1, then bn ∼ 0.
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