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ABSTRACT
We combine a thermoacoustic experiment with a thermoa-

coustic reduced order model using Bayesian inference to accu-
rately learn the parameters of the model, rendering it predictive.
The experiment is a vertical Rijke tube containing an electric
heater. The heater drives a base flow via natural convection, and
thermoacoustic oscillations via velocity-driven heat release fluc-
tuations. The decay rates and frequencies of these oscillations
are measured every few seconds by acoustically forcing the sys-
tem via a loudspeaker placed at the bottom of the tube. More
than 320,000 temperature measurements are used to compute
state and parameters of the base flow model using the Ensem-
ble Kalman Filter. A wave-based network model is then used
to describe the acoustics inside the tube. We balance momen-
tum and energy at the boundary between two adjacent elements,
and model the viscous and thermal dissipation mechanisms in
the boundary layer and at the heater and thermocouple loca-
tions. Finally, we tune the parameters of two different thermoa-
coustic models on an experimental dataset that comprises more
than 40,000 experiments. This study shows that, with thorough
Bayesian inference, a qualitative model can become quantita-
tively accurate, without overfitting, as long as it contains the
most influencial physical phenomena.

∗Address all correspondence to this author.

NOMENCLATURE
Ag Cross-sectional area of gas [m2], Ag = πD2/4
As Cross-sectional area of solid wall [m2], As = πε(D+ ε)

c Speed of sound propagation [m s−1]
cp,g Specific heat capacity of gas at constant pressure

[m2 s−2 K−1]
cs Specific heat capacity of solid [m2 s−2 K−1]
df Diameter of one of the heater filaments [m]
D Internal diameter of tube [m]
Dp Diameter of single prong [m]
Dw Diameter of single wire [m]
DΣ Total diameter including two prongs and two wires (if

present) [m], DΣ = D+2(Dp +Dw) or DΣ = D
F Friction force at the solid wall [N]
g Acceleration of gravity [m s−2]
hi Convective heat transfer coefficient from gas to solid

[W m−2 K−1]
ho Convective heat transfer coefficient from solid to ambient

[W m−2 K−1]
ki Inviscid pressure loss coefficient at the heater location,

ki = ∆p/
( 1

2 ρhU2
h
)

L Length of the tube [m]
n Interaction index
Nui Nusselt number for convective heat transfer from gas to

solid, Nui = hi D/λg
Nuo Nusselt number for convective heat transfer from solid to

ambient, Nuo = hoL/λa
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p Gas pressure [Pa]
Pr Prandtl number, Pr = ρgνcp,g/λg
q̇/Q̇ Thermal power [W]
Q̇i Thermal power from gas to solid [W],

Q̇i = hiπi(Tg−Ts)δx
Q̇o Thermal power from solid to ambient [W],

Q̇o = hoπo(Ts−Ta)δx
R Reflection coefficient
R∗g Gas constant of air [m2 s−2 K−1], R∗g = p/(ρT )
s Complex frequency of the thermoacoustic system [s−1],

s = sr + i si
si Frequency of oscillation [s−1]
sr Growth/Decay rate of oscillation [s−1]
t Time [s]
T Temperature [K]
u/U Gas velocity [m s−1]
x Axial coordinate [m]

γ Heat capacity ratio of air, γ = 1.4
δbl Boundary layer thickness [m]
∆x Length of small acoustic element [m]
ε Tube thickness [m]
Θ∗ Non-dimensional temperature, Θ∗ = (T −T1)/T1
λ Thermal conductivity [W m−1 K−1]
ν Momentum diffusivity [m2 s−1]
πi Inner perimeter of solid wall [m], πi = πD
πo Outer perimeter of solid wall [m], πo = π(D+2ε)
ρ Density [kg m−3]
τ Time delay [s]
τwall Shear stress at the tube wall [kg m−1 s−2]

(·) Average gas quantity
˜(·) Quantity per unit length
(·)∗ Non-dimensional quantity
(·)′ First-order perturbed quantity
(·)1 Geometric or gas quantity evaluated at tube inlet section
(·)2 Geometric or gas quantity evaluated at tube outlet section
(·)a Quantity at ambient conditions
(·)d Quantity downstream of heater
(·)dd Quantity referring to drag device
(·)e Equivalent quantity
(·)g Quantity that refers to gas
(·)h Quantity that refers to heater or evaluated at heater loca-

tion
(·)i Quantity that refers to acoustic element i
(·)m Quantity that refers to microphone
(·)p Quantity that refers to a single heater prong
(·)s Quantity that refers to solid wall
(·)t Quantity that refers to thermocouple
(·)th Thermal quantity
(·)u Quantity upstream of heater

(·)vis Viscous quantity
(·)w Quantity that refers to a single heater wire

1 INTRODUCTION
Thermoacoustic oscillations are nonlinear phenomena that

occur whenever heat release rate fluctuations are sufficiently in
phase with pressure oscillations. They can cause structural vibra-
tion of the system or even complete destruction. Predicting and
eliminating thermoacoustic oscillations is a significant challenge
in gas turbine design. Due to the high sensitivity of the growth
rate of oscillations to geometry, boundary conditions, and system
parameters, models often fail at accurately predicting the insta-
bility of a thermoacoustic system. This means that a stable lab-
scale engine does not guarantee that its full-scale version will be
stable as well. An example of this is the Saturn V engine, which
required more than 2000 full-scale tests before a stable config-
uration was achieved [1]. Recently introduced legislation re-
garding NOx emission [2], will require gas turbines to operate at
lean premixed conditions. These conditions, however, are more
conducive to thermoacoustic instability because lean flames are
more sensitive to equivalence ratio perturbations [2–4]. This mo-
tivates research into quantitative modelling of these phenomena.

The goal of this study is to combine statistical methods
with a vast amount of experimental data in order to extract
quantitatively-accurate reduced order models based on physi-
cal principles. This technique is called data assimilation, and
was first developed for meteorology problems [5]. The prob-
lem of having a computational model that depends on parame-
ters with unknown value and uncertainty represents a classical
inverse problem. Many engineering problems fall into this cat-
egory, and therefore many mathematical tools have been devel-
oped for this over the past decades. In the first part of this study
the unknown parameters are inferred using an Ensemble Kalman
Filter (EnKF), which is a data assimilation technique, whereas in
the second part we infer the model parameters by simple regres-
sion.

The paper is organized as follows. Sec. 2 provides a de-
scription of the physical mechanism that triggers thermoacoustic
instabilities in a Rijke tube. Sec. 3 describes the experimental
apparatus and the way data are acquired and processed. Sec. 4
presents a model of the base flow that arises by natural convec-
tion inside the Rijke tube, and describes how this is combined
with the experimental observations. Sec. 5 contains details on
the acoustic model, which is built using the information coming
from the base flow model. Sec. 6 tests and compares two differ-
ent physics-based thermoacoustic models.

2 PHYSICAL DESCRIPTION OF THE RIJKE TUBE
In this study we use a Rijke tube, which is a simple ther-

moacoustic device that supports thermoacoustic oscillations. It
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FIGURE 1: Sketch of the experimental apparatus including 6 mi-
crophones, 8 thermocouples to measure the gas temperature at
the tube centerline, a thermocouple to measure the ambient tem-
perature, a loudspeaker, and an electric heater held in place by a
pair of prongs and wires. Note that the loudspeaker acoustically
forces the system at a frequency, f , close to the natural frequency
of the tube, fn.

is a vertical tube, generally open at both ends, which contains a
heat source. The heat source sets up a natural convection flow
through the tube. On top of the mean flow, small acoustic per-
turbations can propagate. For a tube open at both ends, the first
acoustic mode has a pressure node and a velocity antinode at
the two ends of the tube, and a pressure antinode and a velocity
node in the middle. Air flows towards the centre of the tube dur-
ing the compression phase of an acoustic cycle and away from
the centre during the expansion phase. When the heat source is
placed in the bottom half of the tube, it experiences a higher-
than-average velocity during the compression phase, which in-
creases the heat transfer to the flow, and a lower-than-average
velocity during the expansion phase, which decreases the heat
transfer to the flow. Typically there is also a small time delay be-
tween the velocity perturbation and the subsequent heat transfer
perturbation. The time delay is such that moments of increased
heat transfer occur during moments of increased pressure, and
moments of decreased heat transfer occur during moments of de-
creased pressure. In the absence of dissipation, this causes the
acoustic energy to grow [6]. In the presence of dissipation, typi-
cally through visco-thermal mechanisms and acoustic radiation,
the acoustic energy grows only if the above driving mechanism

FIGURE 2: Electric heater made up of 0.559 mm diameter Ni-Cr
filaments wound between two parallel ceramic rings.

exceeds the dissipation. Ref. [7] found that the optimal posi-
tion for self-excited thermoacoustic oscillations is when the heat
source is placed at xh/L = 0.25. When the heat source is instead
placed in the top half of the tube, moments of increased heat
transfer coincide with moments of lower pressure, and moments
of decreased heat transfer coincide with moments of higher pres-
sure. This causes the acoustic energy to decrease [6].

3 EXPERIMENTAL SETUP
3.1 Apparatus

A sketch of the experimental apparatus is shown in Fig. 1.
The rig consists of a 1 m long stainless steel vertical tube with
an internal diameter of 47.4 mm and a wall thickness of 1.7
mm. An electric heater (Fig. 2) is attached to two rods and held
in place at four different positions from the bottom end of the
tube: xh/L= [0.55,0.50,0.45,0.40]. The heater is powered by an
Elektro-Automatik EA-PSI 5080-20 A DC programmable power
supply with maximum power 640 W, controlled through National
Instruments LabVIEW. The experimental apparatus, as described
so far, is that in [8].

Six G.R.A.S. 40SA probe microphones are used to record
the pressure near the inner surface of the tube at different ax-
ial locations measured from the bottom of the tube: xm/L =
[0.95,0.85,0.75,0.65,0.55,0.45]. Each microphone is equipped
with a 20 mm long probe, on top of which a temperature shield
is mounted. The raw pressure signal is sampled at 10 kHz, which
is much higher than the anticipated frequencies of the thermoa-
coustic oscillations, 170 to 190 Hz. All data is acquired through
a National Instruments BNC-2110 DAQ device using LabVIEW.
A 4 Ω Visaton FRS 8 loudspeaker is fixed at the base of the
tube. The loudspeaker is connected to a Stage Line STA-500 Pro
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FIGURE 3: Pressure oscillations recorded by the six micro-
phones after sinusoidal forcing at 170 Hz. The inset figure shows
the corresponding pressure eigenmode.

Power amplifier with maximum power 600 W controlled through
National Instruments LabVIEW.

Eight type-K thermocouples are installed along the cen-
treline of the tube through small holes at positions xt/L =
[0.90,0.80,0.70,0.60,0.50,0.40,0.30,0.20]. An additional ther-
mocouple is placed near the inlet section to record the ambi-
ent temperature. All thermocouples are logged with four TC-08
USB DAQ boxes. In the following discussion, we will assume
that the temperature does not vary in the radial direction, so that
a 1D model can be used. This assumption could be relaxed, but
the modelling would be significantly more expensive.

3.2 Data acquisition
The experiment is automated through National Instruments

LabVIEW. The input power is varied in steps of 10 W, from 10
W to 180 W. Each step lasts 70 minutes. For every heater po-
sition, each experiment lasts 21 hours. The nine thermocouples
measure the temperature simultaneously every 7 seconds. Ev-
ery 7 seconds, a sinusoidal signal at 170 Hz is provided to the
loudspeaker. At these heater powers, the system is thermoacous-
tically stable, so the acoustic oscillations decay. Their decay rate
and frequency depend, however, on the thermoacoustic driving
from the heater. The experimental campaign is carried out in
the stable regime because the power that can be provided to the
heater is limited to 300 W, which is not enough to acquire a large
set of experimental data in the unstable regime. Investigation of
the unstable regime would require an additional microphone to
be placed near the top end of the tube, and a phase-shift ampli-
fier for active control of the system.

FIGURE 4: Sketch of a small element of tube of length δx with
gas speed U(x), gas temperature Tg(x), solid temperature Ts(x),
ambient temperature Ta, and inner and outer heat flow rates Q̇i
and Q̇o, respectively.

3.3 Data processing
Fig. 3 shows a plot of the pressure signal recorded by the

six microphones. To extract the decay rate and frequency, firstly,
the decaying part of the signal is isolated. Secondly, the Fourier
transform is applied. Thirdly, the logarithm of the resulting sig-
nal is taken. Finally, by means of a lifted cosine weighted func-
tion, a weighted least squares regression is performed in order to
fit a straight line. The slope of the straight line corresponds to
the decay rate, whereas the frequency of the oscillations is given
by the frequency where the peak in the Fourier spectrum occurs.
This procedure is applied to each microphone, and the six values
are then averaged to obtain a more robust estimate, although no
significant scatter exists between the six measurements. The av-
eraged decay rate and frequency represent the real and imaginary
parts of the complex frequency s, respectively.

4 BASE FLOW MODEL AND ANALYSIS
4.1 Model

We consider a small element of tube of length δx (see
Fig. 4). The energy balance in the solid reads

(ρsAsδx)cs
∂Ts

∂ t
=−∂ Q̇s

∂x
δx− Q̇o + Q̇i (1)

By assuming that the diffusive heat transfer Q̇s = −λs
∂Ts
∂x , and

that Q̇o and Q̇i can be modelled with convective heat transfer
coefficients ho and hi, respectively, and by further assuming con-
stant thermal conductivity λs, Eq. (1) can be re-written as

ρsAscs
∂Ts

∂ t
= λsAs

∂ 2Ts

∂x2 −hoπo(Ts−Ta)+hiπi(Tg−Ts) (2)

4



By re-arranging and replacing the convective heat transfer coef-
ficients with Nusselt numbers, one obtains

(3)

∂Ts

∂ t
=

λs

ρscs

∂ 2Ts

∂x2 − Nuo
λa

ρscs

πo

As L
(Ts − Ta)

+ Nui
λg

ρscs

πi

As D
(Tg − Ts)

The same procedure can be applied to a control volume con-
taining gas moving at local speed U , thus giving

(ρgAgδx)cp,g

(
∂Tg

∂ t
+U

∂Tg

∂x

)
=−

∂ Q̇g

∂x
δx− Q̇i +

˜̇Qhδx (4)

In Eq. (4), the source term ˜̇Qh accounts for the electric heater.
The inlet gas quantities (·)1 are assumed to be ambient (·)a. One
can now apply the ideal gas law, as well as Fourier’s law, and use
mass conservation in its integral form

(
∂ (ρAU)

∂x = 0
)
, to obtain

(5)
ρ1Agcp,g

T1

Tg

∂Tg

∂ t
+ ρ1Agcp,gU1

∂Tg

∂x

= λgAg
∂ 2Tg

∂x2 − Nuiλg
πi

D
(Tg − Ts) +

˜̇Qh

The gas thermal conductivity is assumed to be equal to that of
air at ambient conditions, i.e. λg = λa = λ1. Radiation is not
modelled.

We also solve the integral momentum equation, in which
we assume that (i) the unsteady term is negligible, i.e. the iner-
tia forces are negligible compared with the buoyancy and drag
forces, and (ii) the total pressure losses ∆p are concentrated at
the heater location, and modelled through an inviscid pressure
loss coefficient ki, such that ∆p = ki(ρhU2

h )/2. The integral mo-
mentum equation is

ρ2U2
2 −ρ1U2

1 + ki
ρhU2

h
2

=
∫ L

0
(ρ1−ρg)gdx (6)

By using mass conservation and the ideal gas law, Eq. (6) can be
re-arranged to

U2
1

[
ki

2

(
A1

Ah

)2 Th

T1
+

(
A1

A2

)2 T2

T1
−1
]
=
∫ L

0

(ρ1−ρg)

ρ1
gdx (7)

In our case A1 = A2 = Ah, but in general these areas could be
different.

4.2 Non-dimensionalization
We non-dimensionalize Eqs. (3), (5) and (7) with the ref-

erence scales {L, g, T1}, which naturally give a time scale
(L/g)1/2, and a velocity scale (gL)1/2. Temperatures are mea-
sured relative to T1 and then divided by T1. For example, T
becomes Θ∗ = T−T1

T1
. Non-dimensional quantities are denoted

by (·)∗ to distinguish them from the corresponding dimensional
quantities. The energy equation for the solid becomes

(8)

T1

(L/g)1/2

∂Θ∗s
∂ t∗

=
λs

ρscs

T1

L2
∂ 2Θ∗s
∂x∗2

− Nuo
λa

ρscs

πo

As L
T1Θ

∗
s + Nui

λa

ρscs

πi

As D
T1(Θ

∗
g −Θ

∗
s )

We define the following non-dimensional parameters

η
∗
1 =

1
L(gL)1/2

λs

ρscs
(9)

η
∗
2 =

πo

As(gL)1/2

λa

ρscs
(10)

η
∗
3 =

πi

As(gL)1/2

L
D

λa

ρscs
(11)

and re-write Eq. (8) compactly as

∂Θ∗s
∂ t∗

= η
∗
1

∂ 2Θ∗s
∂x∗2 −Nuoη

∗
2 Θ
∗
s +Nuiη

∗
3 (Θ

∗
g−Θ

∗
s ) (12)

The energy equation for the gas becomes

(13)

ρaAgcp,g
T1

(L/g)1/2

1
(Θ∗g + 1)

∂Θ∗g
∂ t∗

+ ρaAgcp,g
T1

(L/g)1/2 U∗1
∂Θ∗g
∂x∗

= λaAg
T1

L2

∂ 2Θ∗g

∂x∗2

− Nuiλa
πi

D
T1(Θ

∗
g −Θ

∗
s ) +

˜̇Qh

We define the following non-dimensional parameters

η
∗
4 =

1
L(gL)1/2

λa

ρacp,g
(14)
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η
∗
5 =

πi

Ag(gL)1/2

L
D

λa

ρacp,g
(15)

Q̇∗h =
(L/g)1/2

T1

˜̇Qh

ρaAgcp,g
(16)

and re-write Eq. (13) compactly as

1
(Θ∗g + 1)

∂Θ∗g
∂ t∗

+U∗1
∂Θ∗g
∂x∗

= η
∗
4

∂ 2Θ∗g

∂x∗2 − Nuiη
∗
5 (Θ

∗
g −Θ

∗
s ) + Q̇∗h

(17)

The integral momentum equation becomes

(18)

∫ 1

0

Θ∗g
Θ∗g + 1

dx∗ = U∗1
2
[

ki

2

(
A1

Ah

)2

(Θ∗h + 1)

+

(
A1

A2

)2

(Θ∗2 + 1)− 1
]

4.3 Numerical implementation
A 1D Finite-Difference scheme with 101 points is used for

spatial discretization of the base flow model. The scheme is
fourth-order accurate and is centred everywhere except at the
boundaries, where it is biased. Zero temperature gradients are
imposed at the inlet and outlet boundaries. An explicit fourth-
order accurate Runge-Kutta scheme is used for time integration.
The source term in Eq. (17), Q̇∗h, is modelled with a Gaussian
distribution centred at the heater location, with variance set arbi-
trarily to 0.0002 m2, normalized such that its integral equals the
input power. The second-order accurate midpoint rule is used for
the integral in Eq. (18).

4.4 Bayesian inference
The 1D unsteady model is marched forward in time to re-

produce the evolution of the experiment. This, however, requires
knowledge of the three parameters Nui, Nuo, and ki. We wish
to exploit the information from both the model and the experi-
ments in order to obtain the best possible estimate of the gas and
solid temperature profiles. We must consider that our base flow
model is nonlinear in the temperature Θ∗g. The Ensemble Kalman
Filter is a suitable tool to address these problems [5]. This repre-
sents the statistically optimal method when working with Gaus-
sian distributions of state and parameters, in the sense that it pro-
vides the minimum variance estimate or, equivalently, the max-
imum likelihood estimate of f (ψ|d) [5]. The idea, which relies

on Bayes’ theorem, is to find the optimal estimate for state and
parameters, given the marginal probability of the model

(
often

called the prior, f (ψ)
)
, which is the probability of the model

with no knowledge of the data, and the probability of the data
given the model

(
often called the likelihood function, f (d|ψ)

)
.

The product of these two probability density functions, once
properly normalized, gives the probability of the model given the
data

(
often called the posterior, f (ψ|d)

)
, which represents the

statistically best estimate that one can compute, given the model
and the experimental data with the associated uncertainties. This

is summarized by f (ψ|d) = f (ψ) f (d|ψ)

f (d) , which represents Bayes’
theorem. In the present case, the state is a vector containing the
solid and gas temperatures at every grid point, and the parameters
are Nui, Nuo, and ki.

The EnKF randomly samples from the prior distributions
and simulates every member of this ensemble until experimen-
tal observations become available. The prior distributions of the
state and the parameters are defined by their mean and standard
deviations. We set the initial state to be the ambient state with
zero variance. We set the initial parameters [Nui,Nuo,ki]

T arbi-
trarily to have mean [7,60,9.5]T and variance [0.2,0.3,0.1]T . We
assume that the experimental temperature measurements have
uncertainty ±4 K. We use an ensemble made up of 30 members.
Once the temperature measurements become available (every 7
seconds), state and parameters are updated using Bayes’ theo-
rem. Because the model is nonlinear, the initial Gaussian shape
of the prior distribution deforms into a non-Gaussian distribu-
tion. Before the update step, the mean and covariance of this
new distribution are computed from the ensemble members and
a new Gaussian distribution is assumed, with the same mean and
covariance. The update state is performed and the optimal state
and parameters are estimated with their uncertainties, based on
the likelihood function. The optimal distributions then become
the new prior distributions to sample from, and the process re-
peats. With this process, one is able to (i) infer the evolution of
the model parameters with their uncertainties, and (ii) improve
the estimate of the state, which becomes more robust by learning
from the experimental measurements.

4.5 Analysis
Figs. 5a to 5c show the evolution of the model parame-

ters from low powers (10 W) to high powers (180 W), with
an uncertainty of ±2σ . The results for xh/L = [0.40,0.50]
have higher uncertainties and less regular trends than those for
xh/L = [0.45,0.55] especially as far as Nui is concerned. This
is because for xh/L = [0.40,0.50] the thermocouple measure-
ments at the heater location are affected by radiation and con-
duction, and are therefore discarded, being these mechanisms
not included in our model. This is the most informative loca-
tion (see Fig. 5e). Fig. 5d shows the inlet bulk velocity, which
increases to a plateau at high powers. Despite the imperfection
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(a) Inner Nusselt number. (b) Outer Nusselt number.

(c) Pressure loss coefficient. (d) Inlet bulk velocity.

(e) Gas temperature at t = 21 h. (f) Outlet gas temperature.

FIGURE 5: (a), (b), (c): Base flow model parameters with uncertainty ±2σ as functions of time ([h], bottom axis) or heater power ([W],
top axis). (d): Bulk velocity of the gas at the inlet of the tube. (e) Gas temperature distribution inside the tube at t = 21 h (Q̇h = 180 W)
with corresponding experimental measurements. (f) Outlet gas temperature evolution.
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FIGURE 6: Sketch of a network model with five acoustic ele-
ments separated by four jump conditions. The travelling waves
in each acoustic element are denoted by fi and gi. R1 and R2 are
the inlet and outlet reflection coefficients.

in the model, the gas temperature (Fig. 5e) seems to capture well
the experiments even for the largest discrepancy case (Q̇h = 180
W). Finally, Fig. 5f shows the evolution of the outlet gas temper-
ature, which is particularly influential for the phase of the outlet
reflection coefficient.

5 ACOUSTIC MODEL AND ANALYSIS
5.1 Model

To model the acoustics, we split the domain into 50 acoustic
elements, each with constant density, pressure, and temperature,
and connect these with a network model [9]. Forces (shear stress
at the wall) and heat transfer (to and from the wall) are integrated
across adjacent acoustic elements and then modelled by jump
conditions between the elements. The choice of using 50 acous-
tic elements is simply motivated by the fact that a smaller num-
ber does not significantly reduce the computational cost. Fig. 6
shows a sketch of a network model with five acoustic elements
separated by four drag devices, denoted by (·)dd, representing
four jump conditions. We assume that entropy waves have no
influence and, knowing that the mean flow is much slower than
the speed of sound, assume zero mean flow. The linearized mo-
mentum and energy equations in each acoustic element are

ρ
∂u′

∂ t
+

∂ p′

∂x
= 0 (19)

∂ p′

∂ t
+ γ p

∂u′

∂x
= 0 (20)

The solution of the above equations is obtained by performing
a Riemann decomposition, which results in a f -wave travelling
downstream and a g-wave travelling upstream. The pressure and

the velocity fluctuations in the generic acoustic element i are

p′i(x, t) = fi

(
t− x

ci

)
+gi

(
t +

x
ci

)
(21)

u′i(x, t) =
1

ρ ici

[
fi

(
t− x

ci

)
−gi

(
t +

x
ci

)]
(22)

We take Laplace transforms of the travelling waves, hence
fi
(
t− x

c

)
= Fi(s) est e−s x

ci and gi
(
t + x

c

)
= Gi(s) est e+s x

ci . The
jump conditions between the elements model the visco-thermal
phenomena in the system. The first is the heat and momentum
transfer that occurs in the boundary layer due to velocity and
temperature gradients at the tube walls and around the heater
prongs and wires. The second is the heat and momentum trans-
fer where the heater and thermocouples are inserted. The third
is the thermoacoustic mechanism, which we deal with separately
in Sec. 6. The radiation of acoustic energy through the tube ends
is accounted for by a reflection coefficient, experimentally calcu-
lated and assumed to be constant for all the experiments.

The visco-thermal drag in the boundary layer is distributed
inside each acoustic element. From [10], the fluctuating wall
shear stress is τwall = −(ρν/δbl)u′, where δbl = 2π(2ν/si)

1/2.
Consider now an element of tube with length ∆x and total perime-
ter πDΣ, with DΣ = D+2(Dp +Dw). This diameter allows us to
account for the presence of the two prongs and wires to which the
heater is attached. The total fluctuating force on the fluid element
is

∆F = ∆x πDΣ τwall =−∆x DΣ

ρ

23/2 (siν)
1/2u′ (23)

We now define an equivalent area, and corresponding equivalent
diameter, to account for a reduced flow area in the acoustic ele-
ments that contain heater prongs and wires:

Ae = A−Ap−Aw =
π

4
(D2−2D2

p−2D2
w) =

π

4
D2

e (24)

(If an acoustic element does not contain heater prongs and wires,
then we set DΣ = De = D and Ae = A.) Integrating the momen-
tum equation across adjacent acoustic elements gives the pres-
sure jump as a known linear function of the acoustic velocity u′

(25)

p′i+1(t)− p′i(t) =
∆F(t)

Ae

= −∆x
DΣ

πD2
e

ρ(2νsi)
1/2u′i(t)

≡ −kvis,blu′i(t)

8



Similarly, the heat transfer from the wall into the gas is

∆q̇ =−∆x πDΣ

λ

δbl
T ′ (26)

where δbl is assumed to be the same as for the viscous boundary
layer because the Prandtl number for air is close to 1. The gas is
assumed isentropic and ideal, so T ′

T = p′
p

γ−1
γ

and p = ρR∗gT . By
combining the previous relationships, we obtain the heat transfer
as a known linear function of the acoustic pressure p′:

∆q̇ =−∆x DΣ

(siν)
1/2

23/2Pr
p′ (27)

This can be written as a jump condition for the acoustic velocity.
Integrating the energy equation across adjacent acoustic elements
gives

(28)

u′i+1(t)− u′i(t) =
γ − 1

γ

1
p

4
πD2

e
∆q̇(t)

= −∆x
γ − 1

γ

1
p

(siν)
1/2

23/2Pr
p′i(t)

≡ −kth,bl p′i(t)

By combining Eqs. (21), (22), (25) and (28), the momentum and
energy jump conditions at xdd can be written in terms of F and G
as

(29)
Fi+1e

−s xdd
ci+1 + Gi+1e

+s xdd
ci+1 − Fi

(
1−

kvis,bl

ρ ici

)
e−s xdd

ci

− Gi

(
1 +

kvis,bl

ρ ici

)
e+s xdd

ci = 0

(30)

Fi+1
e
−s xdd

ci+1

ρ i+1ci+1
− Gi+1

e
+s xdd

ci+1

ρ i+1ci+1

+ Fi

(
kth,bl −

1
ρ ici

)
e−s xdd

ci

+ Gi

(
kth,bl +

1
ρ ici

)
e+s xdd

ci = 0

For the first and last acoustic elements

F1e−s xu
c1 −R1G1e+s xu

c1 = 0 (31)

R2FNe−s xd
cN −GNe+s xd

cN = 0 (32)

Eqs. (29) to (32) can be written in matrix form as

A(s)W = 0 (33)

where s is the complex frequency of the system, whose real and
imaginary parts represent growth rate and frequency of the ther-
moacoustic oscillations. W is the vector of complex amplitudes
[Fi,Gi]

T , with i = 1, ... ,N, and N the total number of acoustic el-
ements. Further modelling is described in the following section,
where some results are presented.

5.2 Analysis
The decay rate and frequency of oscillations in the

empty tube, averaged over 1100 identical experiments, are
s = −7.61 rad ·s−1 + i 168.10 Hz. We assume that the
two ends are acoustically identical, i.e. R1 = R2 = R, and
solve Eq. (33) for R, given s. This gives a reflection co-
efficient for the empty tube of R = −0.9758 + i 0.1003.
Once the reflection coefficient is known, the heater is placed
inside the tube at different positions, without switching it
on. The following 11 positions are investigated: xh/L =
[0.55,0.50,0.45,0.40,0.35,0.30,0.25,0.20,0.15,0.10,0.01].
For each case, 100 identical experiments are performed. The
heater is modelled as a visco-thermal drag element with a time
delay, following the theoretical analysis of [11] and knowledge
of the qualitative form of the feedback sensitivities in [10].
Hence the jump conditions

(
Eqs. (25) and (28)

)
at the heater

location are

p′i+1(t)− p′i(t) =−kvis,hu′i(t− τvis,h) (34)

u′i+1(t)−u′i(t) =−kth,h p′i(t− τth,h) (35)

The four parameters kvis,h, kth,h, τvis,h, and τth,h are obtained by
finding the best fit to Eqs. (33) to (35), given 100 measurements
of s at each of the 11 heater positions.

Fig. 7 shows the predictions of the network model compared
to the experimental measurements for all heater positions. The
calibrated parameters are reported in the caption. The time of
the viscous drag, τvis,h, is negative, while the thermal time delay,
τth,h, is positive, in agreement with [11]. The pressure loss coef-
ficient due to viscous drag at the heater location, kvis,h, is several
orders of magnitude larger than the thermal loss coefficient, kth,h.
Nevertheless, setting kth,h to zero results in relatively large errors
in Fig. 7, showing that the thermal transfer to the heater cannot
be neglected, even when the heater is switched off.
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FIGURE 7: Decay rate (top) and frequency (bottom) of acoustic
oscillations when the heater is switched off and placed at differ-
ent xh/L. The calibrated heater parameters are: kvis,h = 27.3 kg
m−2 s−1, kth,h = 1.53 · 10−5 kg−1 m2 s, τvis,h = −1.36 · 10−3 s,
and τth,h = 8.98 ·10−4 s.

We tried building several other models, which all failed to
predict the correct trend. For example, we tested different com-
binations of models in which the pressure jump is proportional
to p′ or the velocity jump is proportional to u′. This is in per-
fect agreement with the predictions of the feedback sensitivities
in [10] (see Fig 7a in [10]).

The 8 thermocouples are then placed in the tube and the
decay rate and frequency of acoustic oscillations are measured
with a further 100 experiments at each of the 11 heater posi-
tions. There is a small but noticeable shift in the decay rate (top
of Figs. 7 and 8). We introduce 8 new jump conditions into the
model, one at each thermocouple location. We then fix the ratio
kvis,t/kth,t to be the same as that of the heater, kvis,h/kth,h, and set
the time delays to zero, for simplicity, so that the visco-thermal
drag from the thermocouples is quantified by a single parame-
ter. As before, we perform regression on Eq. (33) to calculate the
optimal value of this parameter. This leads to accurate results,
shown in Fig. 8, with the resulting best-fit parameters reported in
the figure caption.

6 THERMOACOUSTIC MODEL COMPARISON
When the heater is switched on, in addition to accounting

for the visco-thermal drag losses that occur in the boundary layer
and across the heater and thermocouples (Sec. 5.2), one has to ac-
count for the thermoacoustic mechanism. By integrating Eq. (20)
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FIGURE 8: Decay rate (top) and frequency (bottom) of acoustic
oscillations when the heater is switched off and placed at differ-
ent xh/L, and thermocouples present inside the tube. The cali-
brated thermocouple parameters are: kvis,t = 0.257 kg m−2 s−1,
kth,t = 1.44 ·10−7 kg−1 m2 s.

across the heater, the jump condition is

u′i+1(t)−u′i(t) =−kth,h p′(t− τth,h)+
γ−1

γ

1
p

4
πD2 q̇′h(t) (36)

A common model for q̇′h(t) is the n− τ model [12], according
to which the normalized heat release rate fluctuations are pro-
portional to the normalized velocity fluctuations upstream of the
heating element with a time delay:

q̇′h(t)
Q̇h

= n
u′h(t− τ)

U1
(37)

Assuming that the parameters n and τ in Eq. (37) are constant,
one can do regression using the remaining 43200 experimental
decay rates and frequencies at different heater powers in order
to infer their values. One can then compare the performance of
the model to the experiments. Results are shown in Fig. 9 and
the best-fit parameters are reported in the figure caption. The
agreement between the lines is fairly good and the main source
of discrepancy occurs when predicting the frequency. The error
becomes larger as the heater power increases. This is mainly
because of the constant reflection coefficient assumed for this
study. In reality, the phase of the reflection coefficient changes
with the temperature, therefore, as the heater power increases, it
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FIGURE 9: Decay rate (top) and frequency (bottom) of the oscil-
lations for the case of heater switched on and placed at different
xh/L. The heater power is increased by 10 W every 70 minutes
(bars at the bottom). Red lines: model. Black lines: experiments.
Optimal thermoacoustic parameters: n = 0.271, τ = 0.517 ms.

is less and less valid to assume constant R2 (Fig. 5f). On the other
hand, the decay rate trend is correctly captured with fairly good
accuracy for all the configurations.

The second model we propose is similar to Eq. (37) but τ is
modelled as

τ = kτ

0.2df

U1
(38)

where df is the diameter of one of the many heater filaments (see
Fig. 2), which is 0.559 mm. The choice of using this model takes
inspiration from [11], who states that ”For frequencies small
compared with ω0 = 20 U1/df, the departure of the heat-transfer
fluctuations from their quasi-steady form consists essentially of
a time lag of the order of 0.2 df/U1”. By doing regression over
n and kτ , one finds that the best-fit n does not change, whereas
kτ = 2.04, which is close to the value of 1 implied by Lighthill’s
statement. With this value of kτ , one obtains a time delay τ in
the range [0.45− 1.20] ms. The results are plotted in Fig. 10.
The frequencies predicted by the network model are similar to
those in Fig. 9. The modelled decay rates, however, seem to be
negatively affected by the dependence on velocity, especially at
low powers, where the velocity shows significant transients (see
Fig. 5d). Overall, the first model, where n and τ are assumed to
be constant, seems to perform slightly better.
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FIGURE 10: Decay rate (top) and frequency (bottom) of the os-
cillations for the case of heater switched on and placed at dif-
ferent xh/L. The heater power is increased by 10 W every 70
minutes (bars at the bottom). Red lines: model. Black lines:
experiments. Optimal thermoacoustic parameters: n = 0.271,
kτ = 2.04.

7 CONCLUSIONS
In this paper we use Bayesian inference on a thermoacoustic

system and assimilate 324,000 temperature measurements and
46,500 decay rates/frequencies to infer the parameters of a re-
duced order model. The experiment consists of an electrically-
heated Rijke tube in the thermoacoustically stable regime. Every
7 seconds we acoustically pulse the system with a loudspeaker
at the bottom of the tube, and measure the subsequent decay rate
and frequency with six probe microphones, sampling at 10 kHz.
We measure the temperature of the air inside the tube at 8 axial
locations, and use these data with their uncertainty to improve
the predictions of an unsteady 1D conjugate heat transfer model
for the base flow. For this, an Ensemble Kalman Filter with 30
members is used to provide statistically optimal estimates of state
and parameters. This allows us to compute the inlet bulk veloc-
ity and the gas temperature at every grid point. The base flow
model informs an acoustic network model, made up of 40 drag
devices to account for visco-thermal losses in the boundary layer,
and 9 drag devices to account for visco-thermal losses across the
heater and the 8 thermocouples. We perform 1100 identical ex-
periments with the empty tube in order to compute the reflec-
tion coefficients at the top and bottom ends, assuming them to be
acoustically identical. We then place the heater inside the tube at
11 different locations without switching it on, and perform 100
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identical experiments for every heater position. This allows us to
infer the model parameters of the visco-thermal losses across the
heater. We find that the viscous loss is characterized by a negative
time delay, whereas the thermal loss has a positive time delay, in
agreement with what found by [11]. We repeat the same pro-
cedure after placing the thermocouples inside the tube and work
out through regression the influence of the thermocouples on the
acoustic flow and thermal fields. Finally, we perform experi-
ments with the heater switched on and investigate four different
heater positions. We vary the heater power by 10 W every 70
minutes. We use the parameters learned in the cold tube cases to
learn the parameters of two thermoacoustic models we propose:
a classical n−τ model with constant parameters, and a modified
version from [11], in which τ = kτ(0.2df)/U1.

This paper shows that an Ensemble Kalman Filter of many
conjugate heat transfer simulations can assimilate experimental
data from a rig, even if it never reaches steady state. Without this
assimilation, the sound speed in a corresponding thermoacous-
tic network model is too inaccurate for the model to be quan-
titatively accurate. With this assimilation, combined with re-
gression to infer another 7 parameters from 46,500 datapoints,
a quantitatively accurate thermoacoustic model can be created.
Although not shown here, several other models were tried, all
of which failed to model the experimental data qualitatively, let
alone quantitatively. Both heat release models perform well. Al-
though we find that the first model performs slightly better than
the second, we conclude that, as long as a model is qualitatively
correct, it can be made quantitatively accurate over the range ex-
amined.

Further improvement of this method will be to infer the re-
flection coefficients with the multi-microphone method. This
will allow us to account for the influence of the high tempera-
ture at the outlet end, which affects the phase of the reflection
coefficient and, consequently, the model predictions of the os-
cillation frequency. We will also infer the parameters of more
complex thermoacoustic models derived via system identifica-
tion based on high-fidelity numerical simulations [13] in order
to assess systematic model error (epistemic error). Another im-
provement will come from replacing regression with a more ro-
bust and quantitatively informative technique in order to provide
uncertainty estimates also for the acoustic and thermoacoustic
parameters. For this part of the work, a more natural choice than
EnKF would be to use Markov Chain Monte Carlo, a Bayesian
inference method that would allow us to relax the Gaussian dis-
tribution assumption albeit at a higher computational cost. In
addition to this, in our future work we will train a purely data-
driven machine learning algorithm and compare its performance
to our physics-based statistical learning technique. Finally, in-
vestigating different configurations and acquiring new data will
allow us to test whether a physics-based model can extrapolate
in a reliable manner.
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