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ABSTRACT
In gas turbines, thermoacoustic oscillations grow if mo-

ments of high fluctuating heat release rate coincide with moments
of high acoustic pressure. The phase between the heat release
rate and the acoustic pressure depends strongly on the flame
behaviour (specifically the time delay) and on the acoustic pe-
riod. This makes the growth rate of thermoacoustic oscillations
exceedingly sensitive to small change in the acoustic boundary
conditions, geometry changes, and the flame time delay. In this
paper, adjoint-based sensitivity analysis is applied to a thermoa-
coustic network model of an annular combustor. This reveals
how each eigenvalue is affected by every parameter of the system.
This information is combined with an optimization algorithm in
order to stabilize all thermoacoustic modes of the combustor by
making only small changes to the geometry. The final config-
uration has a larger plenum area, a smaller premix duct area
and a larger combustion chamber volume. All changes are less
than 6% of the original values. The technique is readily scalable
to more complex models and geometries. This demonstrates why
adjoint-based sensitivity analysis and optimization could become
an indispensible tool for the design of thermoacoustically-stable
combustors.

NOMENCLATURE
A duct area
c speed of sound

∗Address all correspondence to this author.

k flame interaction index
L duct length
m mass flux
n azimuthal wave number
p pressure
Q heat release
r radius
R duct mean radius
t time
u axial velocity
v radial velocity
w azimuthal velocity
x axial position
(¯) mean quantities
(ˆ) perturbation quantities
( )+ adjoint variables
γ ratio of specific heat capacities
δ small quantities
θ azimuthal angle
λ growth rate
ρ density
σ angular frequency
τ time delay
ω eigenvalue
J cost function
L Lagrangian functional
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INTRODUCTION
If heat release rate fluctuations in gas turbine combustion

chambers occur in phase with acoustic pressure fluctuations, then
heat is converted to work and the acoustic amplitude grows.
The heat release rate is large (often several megawatts), so this
thermodynamic process needs to be only slightly efficient for
the amplitude of acoustic oscillations to become large. These
thermoacoustic oscillations produce noise and mechanical vibra-
tions. They are one of the most persistent and challenging prob-
lems facing gas turbine and rocket engine manufacturers [1].

Thermoacoustic oscillations are usually eliminated by a
combination of modelling, trial and error experimental testing,
and addition of passive control devices such as Helmholtz res-
onators. Configurations that are thought to be stable after engine
component tests often turn out to be unstable during full engine
tests [2]. At this stage, it is possible to perform several full engine
tests on slightly different configurations until one is found that is
stable across the entire operating regime [3]. Usually, however,
this is prohibitively expensive. It is more common to add passive
control methods, such as acoustic liners, Helmholtz resonators,
quarter and half wave tubes, baffles etc. [4]. These exploit vortex
shedding and viscous losses to add acoustic damping at selected
frequencies. Their major drawback is that the damped frequency
range can be quite narrow and they are usually unable to adjust
to different operating conditions.

Another option is feedback control. This has been shown to
be effective in laboratory combustors [5]. It has the advantage
that it can readily adapt to changes in the operation conditions
but the disadvantage that it relies on the effectiveness of the sen-
sors and actuators, which must operate without fault for several
million cycles. Another approach is to tune passive control de-
vices so that their effective frequency range can be adapted to the
operating conditions. For example [6] and [7] tuned Helmholtz
resonators and acoustic liners by varying their geometry, neck
area or pipe length respectively. Both of these methods introduce
new failure modes into systems that must usually be designed to
be safe and reliable. This is undesirable and these methods are
usually avoided.

Thermoacoustic systems are exceedingly sensitive to small
changes [8] and can usually be stabilized by making only small
changes. The ideal approach is therefore to tweak the shape of
the system until a stable configuration is achieved. The challenge
is to identify these small changes before the full engine test stage.
In this study we identify every unstable thermoacoustic mode and
use adjoint methods [9] to calculate their sensitivities to all ge-
ometry changes. We then combine this with an optimization rou-
tine that stabilizes all of these thermoacoustic modes by slightly
modifying the geometry. Any stable modes that become unstable
are also targeted and stabilized. The advantage of this approach
is that, unlike a Helmholtz resonator, it stabilizes all unstable fre-
quencies. The disadvantage is that it relies on an accurate model
of the real system (a disadvantage shared by all other methods),

the consequences of which we will discuss in the conclusions.

1 LOW ORDER NETWORK MODELLING
Thermoacoustic oscillations in combustion chambers tend to

have relatively long wavelengths compared to the flow features
and can therefore be modelled reasonably accurately with acous-
tic network models. In this paper we follow the approach de-
veloped by Stow and Dowling [10–12], to model a thin annular
combustor. In this type of model, travelling acoustic and con-
vective waves propagate through and interact with ducts, com-
bustion zones and boundary conditions. The major assumption
is that short zones, such as the combustion zone, are acousti-
cally compact [13]. To model an annular combustor with a ring
of premix ducts, different approaches can be used [14, 15]. In
this paper, however, we follow the model provided by Stow and
Dowling [12].

1.1 Governing equations
The low order network model is developed in cylindrical po-

lar coordinates with governing equations for mass, momentum
and energy, assuming no viscosity or heat conduction:

∂ρ

∂ t
+∇ · (ρut) = 0, (1a)

ρ
∂ut

∂ t
+ρ(ut ·∇)ut +∇p = 0, (1b)

∂ p
∂ t

+ut ·∇p+ γ p∇ ·ut = (γ−1)Q, (1c)

where ut = (u,v,w)T represents the velocities in the x, r and
θ directions, ρ is the density, p is the pressure, Q is the heat
addition, and γ is the ratio of specific heat capacities, which here
is assumed constant.

Many industrial applications involve combustors in which
the radial gap is shorter than the axial length and much shorter
than the circumference. Under these conditions it is common to
set v = 0 and to neglect all variations in the radial (r) direction
[11]. This is the narrow gap approximation.

Following the formalism developed by Stow and Dowling
[10] we linearise the governing equations around a steady and
uniform base flow, which varies only in the axial direction. The
flow variables take the form p= p̄(x)+ p′(x,θ , t) and w̄= 0 [11].
We then perform a Fourier transform in θ and t such that the per-
turbations become p′(x,θ , t) = p̂(x)eiωt+inθ with complex fre-
quency ω and azimuthal wave number n.

1.2 Network Modules
The network is composed of ducts connected by modules

representing jump conditions such as an area increase, area de-
crease, heat sources and boundary conditions.
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1.2.1 Ducts The fundamental elements in low order
network modelling are straight ducts. For a thin annular configu-
ration, these are characterised by a cross sectional area A, length
L, and mean radius R = (r1+r2)/2, where r1 and r2 are the inner
and outer radii of the annular gap. The ducts have homogeneous
properties and are governed by the linearised Euler equations.
These form a convected wave equation, whose solutions are four
travelling waves: two acoustic waves that propagate at the speeds
c̄± ū (where c̄ is the mean speed of sound) and two convective
waves (representing entropy and vorticity waves) that propagate
at the mean flow speed ū.

1.3 Jump conditions

Annular combustors often contain a ring of premix ducts
where the fuel is injected. To model this we follow [12], where
conservation of quantities is enforced in a sector of the annulus
and then integrated over the entire ring. At the start of the premix
ducts, mass flux, entropy, and energy flux are conserved, while
the angular momentum is assumed to be zero. The former is
true because the premix ducts are considered as one dimensional
elements where only plane waves propagate. At the end of the
premix ducts the combustion chamber is modelled again as a thin
annulus. In this jump the conserved fluxes are mass, angular mo-
mentum, and energy, while the axial momentum flux is increased
by the pressure of the walls. This approach sets a restriction on
the maximum azimuthal wave number used, which is less than
half of the number of premix ducts in the configuration [12, 15]
Finally, the heat release is modelled in the combustion chamber
by assuming conservation of mass, axial momentum, and angu-
lar momentum fluxes, while the energy flux is increased by the
added heat release. For this section the unsteady heat release is
modelled with a mass-driven n− τ model:

Q̂
Q̄

= k
m̂x

m̄x
e−iωτ , (2)

where Q is the heat release, k the interaction index, m = Aρu
the mass flux, and τ is the time delay. The subscript denotes the
quantities at position x in the premix ducts. Note that the un-
steady heat source model is proportional to the unsteady mass
flow rate at position x in the premix duct but it’s independent
of its angle, therefore, circumferential modal coupling is not in-
troduced into the system [12]. Kinematic flame models [16–18]
and flame transfer function analysis such as [19] suggest that the
interaction index and the time delay should be modelled as func-
tions of the Strouhal number which depends on the flow and the
duct area. However, to keep the thermoacoustic model as simple
as possible those will be treated as constants.

1.4 Boundary conditions
The model also requires a set of boundary conditions at the

inlet and outlet. Annular configurations often have a compressor
at the inlet and a turbine at the outlet, which can be acoustically
modelled with closed ends (û = 0), with reflection coefficients
or more conveniently as choked ends. For our model we use the
acoustically choked ends described in [20].

1.5 The eigenvalues
The thermoacoustic network model is created by stacking

the preceding elements one behind the other. In this paper, the
eigenvalues are found by guessing an initial value for ω at the
inlet boundary and then propagating the acoustic wave through
the network until the exit boundary condition is reached. The
value of ω is then updated, using a Newton-Raphson method,
until the exit boundary condition is satisfied.

2 ADJOINT BASED SENSITIVITY ANALYSIS
In this paper, the sensitivity of each eigenvalue to all pos-

sible configuration changes is calculated with a single adjoint
calculation. Adjoint methods were first applied to thermoaous-
tic systems by Magri and Juniper [9], using Galerkin methods for
the acoustics. They were extended to wave based thermoacoustic
systems by Aguilar et al. [21].

In general, there are two families of adjoint methods: the
continuous adjoint, in which one derives and solves the adjoint
of the continuous governing equations, and the discrete adjoint,
in which one solves the adjoint of the discretized equations. In
this paper, we use the continuous approach, which allows us to
include base flow modifications more easily. We follow the ad-
joint based sensitivity analysis developed in [21] to compute the
sensitivities to the areas, lengths, and mean radii of the ducts as
well as to the flame parameters. Finally, we use these informa-
tion as an input to an optimization routine used to stabilize all of
the resonant modes in a given configuration.

2.1 The adjoint equations
To obtain the adjoint equations we first create a Lagrangian

functional. Taking [·, ·] as an appropriate inner product, the func-
tional becomes:

L ≡ ω−
[
q̂+,P(ω, q̂,G)

]
−
[
G+,B(G)

]
, (3)

where ω is the eigenvalue. The first inner product is between
the Lagrange multipliers, q̂+, and the perturbation equations and
jump conditions, P, which in turn depend on the eigenvalue, the
perturbation variables, q̂, and the base flow quantities, G. The
second inner product is between the Lagrange multipliers, G+,
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and the equations of the steady problem given by the steady jump
conditions, B, which depend on the base flow variables, G.

Following a continuous adjoint approach we use the first
inner product to compute the adjoint perturbation equations for
each of the elements in the network. We then use the full func-
tional to compute the adjoint base flow equations, which are used
to compute the variation of the eigenvalue whenever a change to
one of the parameters also affects the base flow.

2.1.1 Adjoint equations for ducts. Here we present
the adjoint equations for the ducts in order to show the symmetry
between the direct and the adjoint equations, and to give a brief
insight into the elements used to compute the sensitivities. Fol-
lowing [21], to obtain the adjoint equations we take the deriva-
tive of the Lagrangian functional with respect to the perturbation
variables (p̂, ρ̂, û, ŵ). After integration by parts this produces the
adjoint equations. First we present the unsteady adjoint equa-
tions and then the corresponding steady adjoint equations.

For a straight duct, the relevant components of vector P
in Eq. 3 are given by the linearised form of Eqs. 1. Their
corresponding adjoint variables or Lagrange multipliers (com-
ponents of vector q̂+) are given by the spatial functions
(ρ̂+(x), û+(x), ŵ+(x), p̂+(x))T respectively. The resulting ad-
joint perturbation equations are:

iω∗ρ̂++ ū
dρ̂+

dx
= 0, (4a)

iω∗ρ̄ û++ ρ̄ ū
dû+

dx
+ ρ̄

dρ̂+

dx
+ γ p̄

d p̂+

dx
= 0, (4b)

iω∗ρ̄ŵ++
in
R

ρ̄ ρ̂
++

in
R

γ p̄ p̂++ ρ̄ ū
dŵ+

dx
= 0, (4c)

iω∗ p̂++ ū
d p̂+

dx
+

in
R

ŵ++
dû+

dx
= 0. (4d)

The boundary terms are:

[(
ρ̂
+∗ū
)

δ ρ̂ +
(
ρ̂
+∗

ρ̄ + û+∗ρ̄ ū+ p̂+∗γ p̄
)

δ û+ · · ·(
û+∗+ p̂+∗ū

)
δ p̂+

(
ŵ+∗

ρ̄ ū
)

δ ŵ
]x1

x0
= 0, (5)

where the locations x0 and x1 are the positions of the inlet and
outlet of the duct. The boundary terms must be zero for arbitrary
perturbations (δ terms), so the terms in brackets must be zero.
These terms are used to compute the adjoint jump conditions and
adjoint boundary conditions.

As for the direct equations, the adjoint equations can be de-
coupled into a set of four adjoint waves: two adjoint acoustic
waves, and two adjoint convective waves. The adjoint eigenval-
ues are the complex conjugates of the direct eigenvalues [9].

For a straight duct, the relevant components of vector B in
Eq. 3 are given by the steady part of Eqs. 1. The correspond-
ing Lagrange multipliers (components of vector G+) are given
by the spatial functions (R+(x),U+(x),W+(x),P+(x))T respec-
tively. The resulting adjoint base flow equations are given by:

ū
dR+

dx
= −iω∗(ŵ∗ŵ++ û∗û+)− in

R
ŵ∗ρ̂++ · · ·

ūŵ+ dŵ∗

dx
+
(
ρ̂
++ ūû+

) dû∗

dx
, (6a)

ρ̄
dR+

dx
+ ρ̄ ū

dU+

dx
+ γ p̄

dP+

dx
= ρ̂

+ dρ̂∗

dx
+ · · ·

ρ̄ŵ+ dŵ∗

dx
+ ρ̄ û+

dû∗

dx
+ p̂+

d p̂∗

dx
, (6b)

dU+

dx
+ ū

dP+

dx
= γ p̂+

(
− in

R
ŵ∗+

dû∗

dx

)
, (6c)

dW+

dx
= 0, (6d)

The corresponding boundary terms are:

[(
R+ū

)
δ ρ̄ +

(
R+

ρ̄ +U+
ρ̄ ū+P+

γ p̄
)

δ ū+ · · ·
W+

δ w̄+
(
U++ ūP+

)
δ p̄
]x1

x0
= 0. (7)

Whenever x0 or x1 represents a position of the duct where there
are fixed properties, such as at the boundaries, this implies that
their corresponding δ terms are zero. For example, if the pres-
sure is fixed at the inlet, then at that location δ p̄ = 0, since the
value of p̄ lies outside of the computational domain [22]. The
remaining terms should still equate to zero to obtain the corre-
sponding sensitivities at the inlet boundary condition. If there
are no fixed properties the steady boundary terms work similarly
as in the unsteady case. Note that the adjoint steady flow equa-
tions use the solution of the adjoint unsteady flow equations.

2.2 Sensitivity analysis
To calculate the sensitivities of an eigenvalues with respect

to all parameters, we follow the method in [21]. We set the
derivative of the Lagrangian with respect to the desired parame-
ter, A, to zero: ∂L /∂A = 0. For this, knowledge of the direct
and adjoint variables is required. For the annular combustor the
geometric parameters of interest are the length of the ducts, the
areas, mean radii and the time delay of the heat source. The time
delay is included because it is easily influenced by the fuel injec-
tor design and is also one of the most influential parameters in a
thermoacoustic system [8].
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3 OPTIMIZATION
An application of adjoint based shape optimization in aero-

acoustics can be seen in [23]. In that study the geometry of the
neck of a Helmholtz resonator was optimized to obtain a desired
impedance. In a different manner, our application aims to sta-
bilize all of the thermoacoustic unstable modes of the system.
This is one of the multiple requirements in the gas turbine indus-
try, which include reduction of emmisions, optimization of fuel
consupmtion, performance, durability, serviceability, etc. [24].

3.1 Optimization routine
The adjoint-based sensitivity analysis described in §2 gives

the gradient of each eigenvalue with respect to the geometric pa-
rameters. These gradients can be used in a gradient descent al-
gorithm. Our aim is to stabilize all of the thermoacoustic modes
of an annular combustor simultaneously and we must allow for
unstable modes to disappear or re-appear during the optimization
process. Therefore, we follow the following steps:

1. Compute the resonant thermoacoustic modes of the system
(the eigenvalues).

2. Compute the sensitivity of the eigenvalues with respect to
the geometric parameters (A,L,R,τ).

3. Given a set of constraints and maximum allowed dis-
placements, use an optimization algorithm to compute the
changes in the parameters such that the cost function (be-
low) is optimally reduced.

4. Update the configuration and iterate until all the modes are
stable.

3.2 The cost function and optimization algorithm
By introducing a small change to one of the system’s pa-

rameters (denoted by δA), the eigenvalues shift. The predicted
eigenvalue Ω j is given by: Ω j = ω j +δω j, where ω j is an eigen-
value of the system, and δω j is the corresponding eigenvalue
drift, which is given by the sum of the sensitivities:

δω j =
NX

∑
k=1

∂ω j

∂Ak
δAk, (8)

where NX is the number of relevant parameters in the system.
In the studied frequency range the system will have Nω resonant
modes, each of them represented by: ω j = σ j− iλ j where σ is
the angular frequency and λ is the growth rate. Our objective is
to stabilize all of the resonant modes (i.e., λ j < 0 for j = 1, ...,Nω )
by introducing small changes into the system. To ensure that all
the modes are stabilized we set an objective growth rate λo such
that λo ≤ 0. Once a mode reaches this objective we will not seek
to stabilize it further. With this information we build a predictor
function Ψ j(δA). This function gives 0 if a mode is stable or the

growth rate plus the shift if the mode is unstable:

Ψ j(δA) =

{
Φ j(δA) if Φ j(δA)> 0,
0 if Φ j(δA)< 0,

Φ j(δA) = λ j +
NX

∑
k=1

∂λ j

∂Ak
δAk︸ ︷︷ ︸

−Im{Ω j(δA)}

− λo.

The reduced version of the cost function J (δA), which we min-
imize, is then given by the sum of the predictor functions over all
of the eigenvalues of the system.

By setting the objective growth rate to be λ0 ≤ −1 we
can further add a small constraint to the cost function in order
to select the parameters that produce the smallest variations in
the configuration. By considering δAmk , the maximum allowed
change of the kth parameter the cost function becomes:

J (δA) =
Nω

∑
j

Ψ j(δA)︸ ︷︷ ︸
Reduced version

+
1

Nx

NX

∑
k=1

|δAk|
δAmk

. (9)

Whenever all the modes are stable, the first summation in the cost
function is zero so the algorithm seeks the configuration that re-
quires the smallest change. In order to compute the the changes
in the parameters that minimize the cost function, we use a bar-
rier method. The constrained minimization problem becomes:

minimize J (δA)

subject to −δAmk ≤ δAk ≤ δAmk , k = 1, ...,NX

where δAmk is given as a small percentage of the parameter’s
value.

4 APPLICATION
4.1 Annular combustor model

The annular combustor geometry in this paper is the same as
that in [25]. The geometry is shown in Figs. 1 and 2. It consists
of a thin annular plenum, followed by a ring of 20 premix ducts,
and an annular combustion chamber. At the inlet the flow is
choked and has a pressure of 5 bar, a temperature of 1000 K and
a mass flow rate of 100 kg/s. In order to closely match the results
reported in [25], we considered that (i) the flame is at rest, i.e.
there is no moving flame front, and (ii) the combustion zone has
a steady heat input of Q̄ = 151.1 MW, with interaction index of
k =−4, and time delay of τ = 1.5×10−3 s. At the outlet of the
combustion chamber there is another choked end.
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FIGURE 1: 3D model of the annular combustor with a cross sec-
tional cut.

FIGURE 2: 2D schematic of the annular combustor. The dotted
lines at the inlet and outlet represent choked ends, the blue line
represents the reading point of the heat source and the red line
represents the flame position.

4.2 The eigenvalues
Given that the system is linear and that we are not introduc-

ing elements that break the symmetry of the configuration, such
as Helmholtz resonators [26], the system will not present circum-
ferential modal coupling. At first sight, we need to consider all
possible azimuthal wave numbers n, where n is an integer. How-
ever, for high values of n the modes are strongly stable and do
not need to be stabilized further. For the optimization routine,
the highest azimuthal wave number we consider is n = |3|. This
is less than the maximum |n| imposed by the model, which has
the constraint that |n| < D/2 where D is the number of premix
ducts [12].

For frequencies up to 1000 Hz, Fig. 3 shows the error of
the boundary condition at the outlet of the annular combustor
for azimuthal wave numbers n = 0 and n = ±1. Eigenvalues

(white circles) are located where this error tends to zero. All of
the eigenvalues at higher azimuthal wave numbers are stable (not
shown here). For n = 0 (plane waves) there is an unstable mode
at 57 Hz. For n = ±1 (first helical mode) there is an unstable
mode at 547 Hz, which is very close to the one reported in [25].
The difference between the unstable modes reported in [25] and
the present paper are due to the convective waves. In their model
they are assumed to be zero, which is not true for ours.

(a)

(b)

FIGURE 3: Plots of the boundary condition error for the ini-
tial configuration of the annular combustor. The white markers
represent resonant modes (eigenvalues) found with the shooting
method. (a) corresponds to azimuthal wave number n = 0 and
(b) to n =±1.

4.3 Sensitivity analysis
Before starting the optimization algorithm, it is worth com-

menting on the sensitivities of the initial configuration to changes
in the relevant parameters. From Fig. 4, we see that the sensi-
tivity to area change is one order of magnitude larger than the
sensitivity to length and two orders of magnitude larger that the
sensitivity to mean radius. This suggests that area changes will
dominate the overall stabilization routine. This is because vari-
ations in area induce changes in the mean flow parameters and

6 Copyright c© 2018 by ASME



hence the eigenvalues.
From Fig. 4a we see that the sensitivity to the area of the

premix ducts is positive, which means that we expect the op-
timization routine to reduce this area. On the other hand, the
sensitivity to the area of the plenum and combustion chamber
is negative, which means that we expect the routine to increase
these areas. From Fig. 4b, we see that the sensitivity to the length
of the plenum is positive, so we expect it to reduce. The sensitiv-
ity to the length of the premix duct and the combustion chamber
is negative, so we expect them to increase. Note that the sensitiv-
ity to the length of the premix duct is different on either side of
the measurement point. From Fig. 4c, we see that the sensitivity
to the mean radius is strongest in the combustion chamber, where
we expect the mean radius to increase. From figure 5 we observe
that the sensitivity of the time delay is at least one order of mag-
nitude larger than any of the previous parameters. Furthermore,
we note that while the sensitivity of the unstable modes points
in the same direction (increase to stabilize), the majority of the
stable modes point in the opposite direction. Given how sensitive
the time delay is, and the lack of a preferred direction, in order to
stabilize the system we expect minor changes in this parameter.

The sensitivities calculated with this adjoint method are
compared with those calculated with a finite difference method
for a handful of shifts in a given parameter’s value. We check
that the difference between the adjoint sensitivity and the finite
difference sensitivity increases in proportion to the square of the
shift in the parameter value. This is a strong test that the adjoint
sensitivity is exact to first order and quickly reveals any defects
in the adjoint derivation or adjoint code.

4.4 Geometry modifications for stability
Thermoacoustic oscillations are exceedingly sensitive to

small changes in parameters and there are several ways to sta-
bilize all of the eigenvalues by changing the geometry. In this
paper, we examine five test cases. Each test case allows one or
more geometric parameters to vary until the system is completely
stable. The flame time delay τ is included because this is the con-
vection time of the fuel injection process and is easily altered by
changing the fuel injector. The test cases are:

Case 1: Variations in areas.
Case 2: Variations in areas and mean radius.
Case 3: Variations in areas and lengths.
Case 4: Variations in areas, lengths and mean radius.
Case 5: Variations in areas, lengths, mean radius and time
delay.

In order to ensure a smooth variation of the geometric parame-
ters, the maximum allowed change for each of the parameters is
set as 0.1% of the current magnitude of the parameter. The target
growth rate is set to λo =−5/s.

(a) Average growth rate sensitivity due to changes in area (A).

(b) Average growth rate sensitivity due to changes in lengths (L).

(c) Average growth rate sensitivity due to changes in mean radius (R).

FIGURE 4: Average growth rate sensitivity maps for the unstable
modes of the annular combustor.

4.5 Results and discussion
From the boundary error plot in Fig. 3 we see that there are

three resonant modes (one each for n = 0, n =+1, and n =−1).
They have relatively small growth rates so we expect that only
small changes will be required to stabilize the system. From
Fig. 3b we further note that the eigenvalues are symmetric in
n, which means that when all the unstable modes are included in
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FIGURE 5: Sensitivity of the growth rates to changes in the time
delay for all the resonant modes with azimuthal number n = 0
and n = 1. The red box denotes an unstable mode.

the cost function Eq. 9, the system will prioritize the stability of
the circumferential modes (|n|> 1) because they will be present
twice.

The initial (unstable) and final (stable) configurations are
shown in Fig. 6. The corresponding eigenvalue trajectories for
case 4 are shown in Fig. 7. The trajectories for the other cases
are similar.

For case 1 (area variations only) we observe from Fig. 6a,
that the predictions from the sensitivity analysis of the initial
configuration are correct - i.e. that the largest area change is in
the area of the premix ducts. The total area of the premix ducts
reduces by 6.1% (i.e., the variation of a single premix duct as
the one shown in the figure is 0.305%), the plenum increases by
4.7% and the combustion chamber increases by 3.2%.

Case 2 (area and mean radius variations) is shown in Fig. 6b.
The mean radius of the plenum and premix ducts remain almost
unchanged. The biggest area change is observed at the plenum
with an increase of 5.6% followed by the premix ducts with a
reduction of 5.2% and finally the combustion chamber with an
increase of 1.8%.

In case 3 (length and area variations), the length of the
plenum shrinks by 1.6% with respect to the original value, while
the combustion chamber increases by 1.6% and the premix ducts
increase only marginally.

For case 4 (variations in areas, lengths and mean radius) we
see that changes in areas are more dominant, followed by varia-
tions in lengths and the mean radius.

The final case (variations in area, length mean radius and
time delay) is not shown here because it has almost the same
final configuration as case 4. The optimization routine finds a
configuration in which the time delay changes only by 4×10−5%

with respect to the original value.
In general, we observe an increase in the area of the plenum,

a reduction in the area of the premix ducts and an increase in the
volume of the combustion chamber.

In all the test cases the aim is to optimize the geometry to
achieve stability, based on a given operating condition. How-
ever, in industrial applications the opposite case is often the prob-
lem: find an stable operational map for a given geometry. In
such cases the obvious test case would be to tune the parame-
ters of the flame transfer function until a stable configuration is
achieved. For the particular problem presented in this paper the
tunable parameters would be the interaction index and the time
delay. Given the behaviour of the time delay (see Fig. 5) the sta-
ble operational map would point towards reducing the interaction
index. However, this parameter is hardly tunable and hence the
best option would be to reformulate the flame transfer function
in terms of parameters that can be changed (i.e., fuel flow rate,
equivalence ratio, etc.).

It is worth mentioning that there will be many ways to stabi-
lize this system. Different optimization procedures and different
initial starting points would converge to different final configura-
tions. In practice, a global optimization routine should be used.

5 CONCLUSIONS
In this study we successfully combine an adjoint-based sen-

sitivity analysis with an optimization routine in order to passively
stabilize a model of an annular combustion chamber by slightly
changing its geometry.

We use a low order network model of an annular combustor
with a ring of premix ducts. We derive the continuous adjoint
equations and from these obtain the sensitivities of an eigenvalue
to all geometric parameters. We create an optimization routine
that can stabilize all eigenvalue simultaneously by tweaking the
geometry. In this study, no new unstable modes appear. Even if
they did appear, the optimization routine would stabilize them.
The outcome is a set of different configurations which are com-
pletely stable within the selected frequency range.

By performing an analysis in the initial configuration, we
are able to predict many of the trends that the final configura-
tions will undergo. The final configuration has a larger plenum
area, a smaller premix duct area and a larger combustion cham-
ber volume. All changes are less than 6% of the original values.

This is the first study of adjoint-based geometry optimiza-
tion of an annular combustion chamber. It shows that the pro-
cess is remarkably efficient at stabilizing the eigenmodes of a
thermoacoustic network model. Only small changes are required
and, by employing a global optimization routine, it is likely that
a stable configuration could be found with even smaller changes.
These proposed changes are preferable to the addition of passive
devices such as Helmholtz resonators, which add weight, cost,
and complexity.
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(a) Case 1: variations in areas (A). The change in area with respect to the
original magnitudes are: plenum: 4.7%, premix ducts: −6.1% total (−0.305%
single), combustion chamber: 3.2%.

(b) Case 2: variations in areas (A) and mean radius (R). The change in area with
respect to the original magnitudes are: plenum: 5.6%, premix ducts: −5.2%
total (−0.26% single), combustion chamber: 1.8%. The change in mean radius
with respect to the original magnitudes are: plenum: 0.0071%, premix ducts:
0.0071%, combustion chamber: −1.8%.

(c) Case 3: variations in areas (A) and lengths (L). The change in area with
respect to the original magnitudes are: plenum: 5.5%, premix ducts: −5.3%
total (−0.265% single), combustion chamber: 1.8%. The change in length
with respect to the original magnitudes are: plenum: −1.6%, premix ducts:
4.9×10−4%, combustion chamber: 1.6%.

(d) Case 4: variations in areas (A), lengths (L) and mean radii (R). The change
in area with respect to the original magnitudes are: plenum: 5.5%, premix
ducts: −5.3% total (−0.265% single), combustion chamber: 1.8%. The change
in length with respect to the original magnitudes are: plenum: −1.6%, premix
ducts: −1.5×10−4%, combustion chamber: 1.6%. The change in mean radius
with respect to the original magnitudes are: plenum: 1.5× 10−4%, premix
ducts: −1.3×10−4%, combustion chamber: 0.053%.

FIGURE 6: Cross section cut comparing the initial (blue) and final (red) configurations of the annular combustor after all the eigenvalues
have been stabilized.

Adjoint-based sensitivity analysis and optimization
could become an indispensible tool for the design of
thermoacoustically-stable combustors. It is easy to add
other constraints, either by adapting the cost function or by
preventing the algorithm from entering regions of the design
space. The next steps are to examine network models of more
complex configurations with different heat release models, in
particular those that can be compared with experiments. More
complex systems have more parameters that can be varied. It is
likely that more complex systems will be stabilized with smaller
changes than those shown in this study.

Finally, it is worth noting that thermoacoustic systems
can be stabilized with small geometry modifications because
thermoacoustic oscillations are exceedingly sensitive to small
changes. This means that any model of a system is severely
prone to systematic error in the measurement of its parameters. It
is useful that adjoint-based sensitivity analysis reveals the most

influential parameters. This also highlights, however, that ex-
periments are required to ensure that the model, on which the
sensitivity analysis is based, is a fair reflection of reality. Exper-
imental validation of eigenvalue sensitivity analysis on simple
systems has been performed by [27–29]. Next steps will be to
repeat this on more complex systems and to check the validity of
the model’s predictions.

ACKNOWLEDGMENT
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FIGURE 7: Eigenvalue trajectories from the initial (unstable) to
the final (stable) configurations for variations in area, length and
mean radii (Case 4). The other cases behave similarly. The blue
diamonds (�) represent the eigenvalues of the initial configura-
tion and the red circles (◦) represent the eigenvalues of the fi-
nal configuration. The green, blue, orange and purple trajecto-
ries represent the eigenvalues for the azimuthal wave numbers
n = 0,n =±1,n =±2 and n =±3 respectively.
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