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The self-excited global instability mechanisms existing in flat-plate laminar separation

bubbles are studied here, in order to shed light on the causes of unsteadiness and three-

dimensionality of unforced, nominally two-dimensional separated flows. The presence of

two known linear global mechanisms, namely an oscillator behavior driven by local regions

of absolute inflectional instability and a centrifugal instability giving rise to a steady three-

dimensionalization of the bubble, is studied in a series of model separation bubbles. Present

results indicate that absolute instability, and consequently a global oscillator behavior, does

not exist for two-dimensional bubbles with a peak reversed-flow velocity below 12% of the

free-stream velocity. However, the three-dimensional instability becomes active for recircu-

lation levels as low as urev ≈ 7%. These findings suggest a route to the three-dimensionality

and unsteadiness observed in experiments and simulations substantially different from that

usually found in the literature, in which two-dimensional vortex shedding is followed by

three-dimensionalization.

I. Introduction

Flow separation is invariably associated with adverse effects on the performance of lifting surfaces, a
reason which has provided motivation for research efforts spanning over more than half a century. However,
and despite the continuous research, many questions related to the appearance, structure and behavior
of separation bubbles remain open. Some of these questions were first referred to in the works of Gault
and McCullough1–3 regarding the aerodynamic characteristics of airfoils near and at post stall conditions.
They noted the existence of three different kinds of laminar separation bubbles: for relatively thick airfoils,
separation takes place near the trailing edge and moves up-chord with increasing angle of attack; the involved
physics are similar to those on bluff-bodies. On the other hand, for thin airfoils separation occurs near the
leading edge, immediately past the suction peak. Leading edge bubbles are then divided into short and long

according to their extent in the streamwise direction, and have a very different impact on the aerodynamic
properties of the airfoil. The process in which a short bubble suddenly fails to reattach and becomes a long
bubble after a small variation on angle of attack or Reynolds number is referred to as bursting;4 its physical
causes and the determination of an adequate criteria for predicting its occurrence have been since the 60’s,
and are still today, an active topic of research.4–8

The usual picture of inviscid instability of the separated shear layer leading to laminar-turbulent tran-
sition, and turbulent mixing being ultimately responsible for the reattachment of the separation bubble
suggested considering the properties of the boundary-layer at separation as a criterion for bursting. Besides
bursting, the prediction of other characteristics of separated flow like the onset of unsteadiness (sometimes
associated directly with bursting6) or three-dimensionalization of nominally two-dimensional laminar sepa-
ration bubbles9, 10 has been attempted through the study of linear instability mechanisms of the flow. The
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presence and dominance of Kelvin-Helmholtz instability acting on the shear layer has been confirmed in a
multitude of experimental11, 12 and numerical investigations.6, 8, 9, 13, 14 However, Kelvin-Helmholtz (K-H)
instability alone does not suffice to explain either the occurrence or breathing or flapping bubble behavior,
i.e. oscillations of the entire separation bubble at frequencies substantially lower than those predicted by
locally-parallel linear stability theory.

Theoretical interest in global instability of separation bubbles, either viewed as the existence of an
oscillator behavior driven by spatial regions of absolute instability in weakly non-parallel flow15, 16 or as the
linear instability of a fully non-parallel base state,17, 18 has gained momentum in recent years.

The instability properties of wave-like disturbances like the K-H instability mechanism have been ad-
dressed in the past by means of analyses based on the locally-parallel flow approximation. External insta-
bility waves arriving at the separated region experience a growth of several orders-of-magnitude caused by
the inflectional instability of the shear layer, eventually leading to nonlinear effects and vortex shedding
unless the initial amplitudes were very small. This description of laminar separation bubbles as amplifiers
of external perturbations does not, however, suffice to explain the onset of unsteadiness observed in direct
numerical simulations (DNS) of unperturbed separated flow, nor the occurrence or breathing or flapping
bubble behavior. Absolute/convective instability analysis19 suggested that, besides the amplifier character
of the bubbles, they can also act as oscillators when a spatial region of the underlying base state can sustain
instability waves that propagate upstream. A global instability mechanism would exist in this case, intrinsic
to the bubble, that ultimately results in vortex shedding. Some theoretical studies were conducted in the
past studying this possibility.20, 21

On the other hand, global instability analysis without resorting to locally-parallel flow approximations
has experienced increased activity in the last decade following the advances in computational capabilities
necessary to support the associated numerical work.18 Following this approach, the stability of the two-
dimensional base state under perturbations with arbitrary shape is studied by means of partial-derivative-
based eigenvalue problems. Consequently, the analysis is not restricted to wave-like disturbances, but any
three-dimensional modal perturbation is considered, enabling the study of instability mechanisms different
from the K-H instability. Worthy of mention is the work of Dallmann and Schewe,22 in which they postulate
the existence of a global instability mechanism acting on nominally two-dimensional separation bubbles,
which would exert a three-dimensionalization of the flow eventually leading to unsteadiness. They regret
the absence, at that time, of an analysis methodology able to address this kind of instability. It was not
until the work of Theofilis et al.23 that the required global (or BiGlobal) stability analysis was applied to a
separation bubble on a flat-plate, demonstrating the existence of a self-excited three-dimensional instability
mode and proposing an origin for the unsteadiness of separation bubbles alternative to inflectional instability.
Similar results have been reported in other geometries comprising two-dimensional recirculation regions.24–27

Studies of the topological changes exerted by the three-dimensional instability both on flat-plate laminar
separation bubbles28 (representative of leading-edge bubbles) and in a stalled NACA 0015 airfoil29 (i.e. a
trailing-edge bubble) related the mentioned three-dimensional global instability mode to separation cellular
patterns or stall cells that have been observed experimentally at high Reynolds numbers.30–32

A question that remains open is the ability to predict the onset of global instability in separated flow on the
basis of base or mean flow measurements and a simple criterion. In this respect, Huerre and Monkewitz19

proposed that the criterion urev = u∗
rev/U∗

∞ > 15% relating the peak value of the reversed flow to the
free-stream velocity, be used to define the onset of absolute instability in the shear layer profile. This
value is in contrast with absolute/convective analyses of shear layers in the presence of a wall20, 21, 33 (a
geometry more related to laminar separation bubbles), that agree in a value around urev ≈ 20− 30% for the
onset of absolute instability, in line with results from DNS.34 Conversely, unsteadiness and vortex shedding
have been reported consistently in three-dimensional simulations in which the peak reversed flow of the
mean flow is urev ≈ 10%, remarkably lower than the 20 − 30% necessary for absolute instability of linear
disturbance waves.9, 35, 36 Scenarios of global instability have been postulated22, 23, 37 in order to explain
the origin of unsteadiness, but the identification of such global instability mechanisms and the associated
criteria is still lacking. Building upon previous ideas,23, 28 the possibility of a route to unsteadiness different
from the self-sustained two-dimensional K-H instability was investigated recently.38 A series of flat-plate
laminar separation bubble models were constructed and two instability mechanisms were analyzed, namely
the amplification of external perturbations by K-H instability and the three-dimensional global instability.
It was concluded that the model bubbles were too weak, in terms of peak reversed flow, for the K-H to be
absolutely unstable, while the three-dimensional global mode was found to become unstable for peak reversed
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flows as low as urev = 7%: the primary bifurcation from the steady two-dimensional base state in those cases
is a three-dimensionalization, which could serve as the triggering mechanism leading to three-dimensional
unsteady states. However, the set of bubble models considered in that work was very limited, and proper
instability analyses aimed to the study of the global oscillator mechanism was not performed.

This work revisits the global instability of nominally two-dimensional laminar separation bubbles on
a flat-plate, with three main novelties with respect to the aforementioned work.38 First, the set of base
separation bubbles has been enlarged in order to ascertain if the conclusions drawn correspond to a very
particular choice of parameters or if they can be considered as representative of more general cases. The
second novelty is the search for global instability mechanisms based on local regions of absolute instability of
disturbance waves, following an approach similar to that of Hammond and Redekopp.21 The third subject
of study, no less important, is an effort in the unification of the results of the two approaches of global
instability analysis used herein. In a recent work, Juniper et al.39 compared the growth rates, frequencies
and perturbation shapes of the leading global mode computed by the two types of analysis for a confined
planar wakes showing good agreement in that configuration.

The rest of the paper is organized as follows. Section II describes an inverse formulation of the boundary-
layer equations which is subsequently used in order to construct a set of model laminar separation bubbles
on a flat-plate. The two approaches to the study of linear instability considered in the paper are outlined
in section III. Section IV.A presents results of the locally-parallel flow analysis, while results for the three-
dimensional global instability mode, obtained using the partial-derivative-based global instability analysis
are presented in section IV.B. A brief exposition of the results and conclusions close the paper.

II. Base flow construction

A. Inverse formulation of the non-similar boundary-layer problem

A non-similar inverse formulation of the boundary-layer equations on a flat plate is used to obtain the base
flow. In choosing the current non-similar boundary-layer formulation, the possibility of the appearance of
the bubble shedding as the peak reversed flow increases is circumvented in the computation of the base flow
and may be subsequently recovered as a global instability of the flow.

The physical dimensional streamwise x∗ and wall-normal y∗ coordinates, an arbitrary characteristic length
in the streamwise direction L∗, the far-field velocity U∗

e , and the kinematic viscosity ν∗ are used to define
the non-dimensional boundary-layer variables

ξ = x∗/L∗, and η = y∗
√

U∗
e / ν∗x∗, (1)

and a transformed stream-function

f(ξ, η) = Ψ/
√

U∗
e ν∗x∗. (2)

Introducing these variables into the streamwise momentum equation, an equation for the transformed
stream-function f(ξ, η) is obtained. In order to recover separated states, the (FLARE) Reyhner and Flügge-
Lotz approximation40 has been invoked, which neglects the streamwise convective term when reversed flow
exists. The boundary-layer equation is written as

fηηη +
m + 1

2
ffηη + m(1 − f2

η ) = ξ(θfηfξη + fηηfξ), (3)

where subscripts denote partial differentiation, and m = ξ
U∗

e

dU∗

e

dξ
is the deceleration parameter, which is

variable with ξ. The FLARE approximation appears in this equation as the function θ, which takes value
unity when fη ≥ 0 and vanishes if fη < 0. This problem is solved subjected to the boundary conditions

f(ξ, 0) = 0, fη(ξ, 0) = 0, and fη(ξ, η → ∞) → 1. (4)

In order to avoid Goldstein’s singularity, which would appear at the separation point if a m(ξ) distribution
were imposed, the displacement thickness measured in the transformed variable η is imposed here as an
asymptotic boundary condition:

f(ξ, η → ∞) → 1 − δ̄(ξ). (5)

3 of 15

American Institute of Aeronautics and Astronautics



The solution algorithm iterates on each ξ profile until a converged profile f(ξ, η) and m(ξ) are obtained.
The complete derivation of the equation and boundary conditions can be found in Cebeci and Cousteix;40

further details on the solution procedure were presented in Rodŕıguez and Theofilis.28

B. The boundary-layer-based LSB model base flows

The two-dimensional LSB base state q̄ is constructed using the calculated transformed stream-function f(ξ, η)
(2). The streamwise and wall-normal dimensional velocity components are obtained using the transformation
(1,2):

u∗ = U∗

e · fη, (6)

v∗ =
1

2

√

U∗
e ν

ξ
[f(m + 1) + 2ξfξ + ηfη(m − 1)] . (7)

Lengths are scaled using the dimensional displacement thickness at the inflow boundary, δ∗in, while the
physical streamwise and wall-normal velocity components u∗ and v∗, and their first derivatives are made
dimensionless using the inflow far-field velocity, U∗

∞, and δ∗in. The non-dimensional spatial variables are
denoted by x and y and the base flow dimensionless velocities by ū and v̄. The reference displacement
thickness δ∗in chosen corresponds to Rein = 450. The respective inflow coordinate is x = 152.

An analytical distribution of displacement thickness analogous to that prescribed by Carter41 is used for
(5), in which δ̄ starts at the Blasius value (1.7208) at the inflow boundary, is increased within a finite extent
until a maximum thickness δ̄max is attained; then is decreased until the Blasius solution is again recovered
and is kept constant until the outflow boundary:

δ̄(x) = (δ̄max − δ̄B) · [S(ξ1) − S(ξ2)] + δ̄B, (8)

where

S(ξ) =















0, ξ < 0
[

1 + exp
(

1
ξ−1

+ 1
ξ

)]−1

, 0 ≤ ξ ≤ 1

1, 1 < ξ

(9)

and the auxiliary non-dimensional coordinates ξ1 and ξ2 are defined as

ξ1 = a
2(x − x1)

x2 − x1

, ξ2 = a
2x − x1 − x2

x2 − x1

. (10)

The coordinates x1 and x2 define the locations where the increase of displacement thickness starts and
ends. While delivering displacement thickness distributions analogous to the piece-wise polynomial distribu-
tions used in other works,41, 42 the present function has the advantage of continuous derivatives of all orders.
The value δ̄max acts as a parameter defining the strength of the laminar separation bubble in terms of both
bubble height and reversed flow. δ̄B = 1.72078 is the displacement thickness corresponding to the Blasius
velocity profile. The parameter a is used to determine the maximum slope of S, and was fixed at a = 0.65.
As a result of the choice of the parameter a, the actual maximum displacement thickness of the bubble is
δmax ≈ 0.96× δ̄max, and the effective locations of the start and end of the increase of displacement thickness
are slightly displaced from of x1 and x2.

A series of base flows are computed varying the parameters x2 and δ̄max. The coordinate x1 = 210 is
kept fixed and three different streamwise extents were considered: x2 = 264, 290 and 320. For each extent,
the value δ̄max is varied from 3 to 10. In what follows the different base flows are designated by a letter and a
number: the letter corresponds to the deceleration extent, S for short, M for medium and L for long bubbles;
the number corresponds to the δ̄max value. Figures 1 and 2 summarizes the characteristic parameters of the
model separation bubbles. Figure 1 shows the location of the separation and reattachment points for each
model bubble, as well as the location of the negative peak of wall shear τ = fηη. In the cases where δ̄max

is low, the wall shear distribution within the separated region is nearly symmetric, and consequently the
recirculation center within the bubble is close to the center of the deceleration region. As δ̄max is increased
the peak wall-shear is increased and displaced downstream, and therefore the recirculation center moves
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Figure 1. Laminar separation bubble models. a) transformed displacement thickness distribution δ̄. b) Extent
of the reversed flow region as a function of δ̄max. Solid lines denote separation and reattachment line and
dashed line denote the location of the peak negative wall-shear τmin. Blue, red and black lines correspond to
cases S, M and L, respectively.
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Figure 2. Peak negative wall shear τmin (a) and reversed flow urev% (b) as a function of δ̄max. Blue, red and
black lines correspond to cases S, M and L, respectively.

downstream resulting into an asymmetric bubble. Figure 2 shows the peak values of the negative wall shear
and the reversed flow, scaled with the inflow free-stream velocity urev = u∗

rev/U∗
∞.

III. Linear stability analysis methodologies

Linear stability analysis studies the evolution of perturbations of infinitesimal amplitude superimposed
upon a steady solution of the Navier-Stokes equations, referred to as the base flow. The base flows q̄ = (ū, v̄)
considered here have an inhomogeneous dependence on the streamwise x and wall-normal y coordinates.

Two different types of linear instability analysis are used in this work. The first method considers two-
dimensional wave-like perturbations with a downstream evolution determined by the local properties of the
base flow. The WKBJ approximation is employed, assuming that the characteristic length for the streamwise
variations of the base flow is much larger than the wavelengths λx of the dominant instability waves. This
separation in scales permits reducing the analysis to the solution of several one-dimensional generalized
matrix eigenvalue problems (EVP) at each axial location X , or slice. The absolute frequency ω0 is computed
at each slice, and the complex frequency of the global mode ωg is estimated by analytical continuation into
the complex X-plane. The response of each slice at ωg is then computed and the WKBJ approximation is
inverted in order to obtain the modal shape q̂(X, y). This type of analysis is described further in section
III.A.

The second method does not impose any assumption on the shape of the perturbations. Following
from the dimensionality of the base flow and using separation of variables, modal linear perturbations can
be written, without loss of generality, as q̂(x, y) exp[i(βz − ωt)]. Introducing this decomposition into the
linearized Navier-Stokes equations (LNSE), one arrives at a partial-derivative-based eigenvalue problem for
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two-dimensional eigenfunctions, as discussed in section III.B.

A. The local instability analysis

The local analysis assume that the flow exhibits two well-separated length scales: an instability wavelength,
λx, and a length scale that characterizes the stream-wise non-uniformity of the base flow, L. The ratio
ǫ = λx/L must be small for a local analysis to be rigorously valid. The current development follows
Monkewitz et al.,15 which is summarized pedagogically in Huerre and Monkewitz.43 The linearized Navier-
Stokes equations (LNSE) contain terms that scale with ǫ0, terms that scale with ǫ1 and terms, which are
neglected, that scale with higher powers of ǫ.

The O(ǫ0) terms represent a streamwise succession of locally parallel eigenvalue problems (EVPs) for the
local instability at each slice X . The LNSE are expressed as three partial differential equations (PDEs) in
three primitive variables, q̂ = (û, v̂, p̂)T , and Fourier modes are introduced along the streamwise direction,
leading to

q′(x, y, t) = q̂(y) exp[i(kx − ωt)]. (11)

This converts the three PDEs into three ordinary differential equations (ODEs), that are discretized on
a Chebyshev-spaced grid in the y-direction producing a generalized matrix EVP of the form

A(k)φ = ωB(k)φ (12)

where φ is a column vector representing the discretized values of q̂. This is satisfied for certain (ω, k)
pairs and represents the dispersion relation for this slice of the flow. A spatio-temporal stability analysis is
performed by finding the saddle points of ω(k) that are also k+/k− pinch points. These saddle points are
then followed as the base flow evolves downstream. The absolute complex frequency of the dominant saddle,
ω0, as a function of streamwise distance, X , is stored for the next step in the analysis.

The complex frequency of the linear global mode, ωg, is given at leading order in ǫ by the saddle point
of ω0(X), which is labeled ωs(Xs).

44 For this, it is assumed that the absolute complex frequency ω0(X) can
be continued analytically into the complex X-plane. The position of the saddle point Xs is estimated by
selecting the region of ω0(X) around the maximum of ω0i(X) and then fitting Padé polynomials to these
values. Padé polynomials have two advantages over standard polynomials: they can fit ω0(X) accurately at
relatively low order, and they are better behaved in the complex plane.45

The two-dimensional global mode shape is finally calculated by investigating how the flow responds to
an oscillation with complex frequency ωg, by evaluating the integral

q′(x, y, t) ∼ A0(X)q̂±(y; X) exp

(

i

ǫ

∫ X

0

k±(X ′; ω) dX ′
− ωgt

)

+ c.c., (13)

where the results of the corresponding local EVPs are used at the X-position of each slice: k+ and k− are
respectively the local wavenumbers downstream and upstream of the wavemaker Xs, computed as the values
k that satisfy (12) when ω = ωg. Similarly, q̂±(y; X) is the corresponding local eigenfunction downstream
and upstream of Xs. The global mode is estimated by integrating the k− branch upstream of Xs and the
k+ branch downstream of Xs. The O(ǫ1) terms of the LNSE describe the evolution of the slowly-varying
amplitude A0(X). In this paper, we assume that A0 is uniform. In Juniper et al.,39 it was concluded that
the influence of this assumption is much smaller than the influence of the inaccuracies in k±. More details
on this analysis method can be found in that reference.

B. The global instability analysis

The global (or BiGlobal) instability analysis considers any functional shape for the perturbations that is
allowed by the description of the base flow. The present base flow being inhomogeneous in the streamwise
and wall-normal directions x and y, the most general modal perturbations can be expressed as

q′(x, y, z, t) = q̂(x, y) exp[i(βz − ωt)] + c.c. (14)
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where β is a wavenumber in the spanwise direction, corresponding to a periodicity length λz = 2π/β.
Substitution of (14) into the LNSE delivers a PDE-based eigenvalue problem that, after discretization, takes
the form

A(β)φ = ωBφ. (15)

Here the vector φ contains the discretized version of the eigenfunctions q̂(x, y), associated with the
global complex frequency ω. Stability analysis based on the solution of PDE-based EVPs is often limited
by the large size of the matrices A and B resulting from the numerical discretization of the linear operators
involved. Iterative algorithms based on Krylov subspace iteration have been shown to be very efficient when
a reduced window of the eigenspectrum, localized around a pre-defined value σ, is sought for. In particular,
the shift-and-invert Arnoldi algorithm has become widely popular in the solution of this kind of EVPs.17, 18

In our previous works28, 39, 46 we used different implementations of a similar algorithm for the solution of
the EVP, using a spectral collocation discretization and the parallel dense linear algebra library ScaLAPACK.
In this manner, the memory limitations can be by-passed by using distributed-memory machines, but a large
amount of computational resources is still required. In this work, we make use of a novel algorithm47 that
combines a 8th-order finite differences discretization with sparse storage and operation of the matrices. The
most demanding task in the Arnoldi algorithm, namely the formation and LU decomposition of the matrix
A − σB, is performed using the open-source library MUMPS.48 The computational resources required for
the solution of one EVP of the class (15) in Rodŕıguez and Theofilis28 were 460 Gb. and nearly 4 hours of
wall-clock time in JUGENE (www.fz-juelich.de/jsc/jugene); using the present algorithm, the solution of the
same EVP to a similar convergence level can be obtained in a desktop computer in few minutes, thus enabling
the parametric study presented in this work. The new algorithm also permits the use of spatial resolutions
higher than those affordable with the previous approach. The maximum spatial resolution considered in the
present work makes use of Nx ×Ny = 1800× 400 points, requiring approximately of 50 Gb. and 3 hours for
the recovery of the leading 1000 eigenmodes on a shared memory machine featuring two intel Xeon E5-2690
processors.

IV. Results of the linear instability analyses

The presence of two linear global instabilities in the model laminar separation bubbles is studied here:
a two-dimensional global oscillator resulting from the existence of regions of absolute instability of the K-H
waves, and the steady three-dimensional global mode of laminar separation bubbles discovered by Theofilis
et al.23

A. Two-dimensional global oscillator

Laminar separation bubbles are known to act as amplifiers of incoming disturbance waves, giving rise to
amplifications orders of magnitude larger than those associated with zero-pressure-gradient or attached
adverse-pressure-gradient boundary layers at the same Reynolds numbers. However, as far as this local
instability is of convective nature, it does not suffice to explain the onset of self-sustained oscillations on
the bubble. In the case that the local instability analysis predicts an absolute instability of the waves, a
global mechanism can exist leading to synchronized oscillations in the absence of external excitation. This
possibility was suggested in the past6, 20, 21 to be responsible for the unsteadiness in separation bubbles, but
a large peak reversed flow urev ≥ 20% was found to be required for the existence of the unstable oscillator
mode. Here, the local instability analysis described in section III.A is employed in order to determine whether
the present family of model bubbles, with urev < 12% can behave as global oscillators.

Figure 3 shows the maximum absolute growth rate ω0,i and the streamwise location where it is attained.
The least stable region corresponds in all cases to the vicinity of the maximum displacement thickness
of the bubble, where the inflection point is farther from the wall, as expected from other local stability
analysis of shear flows.19, 33 The peak reversed flow occurs downstream of the peak displacement thickness
and consequently it is not the most representative quantity for the local analyses. No regions of absolute
instability were found for any of the model bubbles. In any case, figure (3,(a)) suggests that a base flow with
a peak reversed flow much larger than 12% would be required for the onset of absolute instability.

Figure 4 shows the frequency and growth rate corresponding to the global oscillator mode. Without local
regions of absolute instability, the oscillator mode is stable for all the model bubbles analyzed. The global
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Figure 3. Maximum absolute growth rate ω0,i (a) and corresponding streamwise coordinate (b) as a function
of the peak reversed flow urev%. The dashed lines denote the location of the peak displacement thickness, δ̄max.
Blue, red and black lines correspond to cases S, M and L, respectively.

a) b)

4 6 8 10 12
−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

 

 

urev%

ω
g
,i

S

M

L

4 6 8 10 12
0.12

0.13

0.14

0.15

0.16

0.17

0.18

 

 

urev%

ω
g
,r

S

M

L

Figure 4. Growth rate (a) and frequency (b) corresponding to the global oscillator mode as a function of the
peak reversed flow urev%. Blue, red and black lines correspond to cases S, M and L, respectively.

growth rate ωg,i follows closely the maximum absolute growth rate ω0,i, highlighting the importance of the
local properties of the base flow on this kind of instability. On the other hand, the global frequency ωg,r

decreases with the streamwise extent of the separation bubble and then depends on global properties of the
base flow.

The global stability analysis presented in section III.B is also capable of recovering the two-dimensional
global oscillator behavior, including under conditions for which this mechanism is stable. The global eigen-
spectrum for laminar separation bubbles on a flat plate38, 42 contains a branch of eigenmodes corresponding to
traveling waves. These eigenmodes represent simultaneously the Tollmien-Schlichting (TS) and the Kelvin-
Helmholtz (KH) mechanisms, as their main characteristics (local velocity profile and energy growth physics)
are recovered respectively in slices where the boundary layer is attached or separated. However, the accurate
computation of the wave-like eigenmodes by partial-derivative-based EVPs may be difficult. Global eigen-
modes in which the perturbation (more precisely, the sensitivity region49) is localized in a bounded spatial
region far from the boundaries of the computational domain are relatively insensitive to the location of the
boundaries and the boundary conditions imposed there.28, 50 On the other hand, the spatial structure of
eigenmodes representing traveling waves extends over the whole domain, including the boundaries, and can
be very sensitive to the choice of domain size and boundary conditions.51 Typically, very high resolutions
are demanded by these eigenmodes in order to resolve the numerical boundary layers appearing due to the
unnatural boundary conditions.
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Figure 5. Global eigenspectrum of two-dimensional perturbations (β = 0) corresponding to case M8, obtained
for four different spatial resolutions: (a) Nx × Ny = 500 × 250, (b) Nx × Ny = 800 × 350, (c) Nx × Ny = 1200 × 350,
(d) Nx × Ny = 1800 × 400. The blue square corresponds to the global oscillator predicted by local theory, ωg.

Figure 5 shows four eigenspectra corresponding to the same base flow (case M8), with increasing spatial
resolutions. The complex frequency corresponding to the global oscillator computed using local analysis is
also shown. These computations consider two-dimensional eigenmodes only (β = 0), and accordingly the
spanwise momentum equation drops permitting higher resolutions at the same computational cost. Figure
5(a) corresponds to a low streamwise resolution (Nx = 500 × Ny = 200), but similar to that used in similar
works in the literature.52, 53 This resolution suffices for the convergence of the three-dimensional eigenmode,
as will be discussed in the next section, but not for the wave-like eigenmodes: as the resolution is increased,
the whole branch of TS/KH eigenmodes displaces remarkably towards more stable eigenvalues. At the
highest resolution affordable in the computer used (Nx = 1800 × Ny = 400, figure 5(d)), these eigenmodes
seem to be close to convergence, though not fully converged yet: the splitting of the branch towards higher
frequencies was pointed out51 to be an indication that even higher resolutions are required. However, the
evolution of the TS/KH branch as the resolution increases suggests that one eigenmode will converge to a
value close to the global oscillator predicted by local analysis. It can be concluded that non-parallel effects
are small and local analysis is a valid approach in the study of Tollmien-Schlichting and Kelvin-Helmholtz
mechanisms in laminar separation bubbles, in line previous findings in the literature.9 Consequently, the
present local analysis based on the WKB assumption is believed to deliver accurate predictions of the global
oscillator dynamics. Note, however, that the global oscillator predicted by local analysis does not correspond
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Figure 6. Global eigenspectrum of three-dimensional perturbations for β = 0.22 corresponding to case M8,
obtained for four different spatial resolutions: (a) Nx×Ny = 50×50, (b) Nx×Ny = 100×100, (c) Nx×Ny = 200×150,
(d) Nx × Ny = 450 × 150.

Table 1. Convergence history of the unstable eigenmode for β = 0.22, corresponding to case M8.

Nx Ny ωi

50 50 0.000346910

100 150 0.000551547

150 150 0.000557983

200 200 0.000561056

450 150 0.000561291

400 250 0.000561358

400 300 0.000561353

to the least damped global eigenmodes within the TS/KH branch.
Figure 9(a) shows the streamwise velocity component corresponding to the stable global oscillator mode

corresponding to the case M8, and compares it with the most unstable three-dimensional eigenfunction for
the same base flow (figure 9(b)), discussed in the next section.

B. Steady three-dimensional global mode

Steady, two-dimensional laminar separation bubbles can become unstable to three-dimensional perturbations
if the recirculation is strong enough, in terms of peak reversed flow or minimum wall shear.23, 24 A centrifugal
instability appears then, which is recovered as a single discrete eigenmode in the framework of the PDE-based
global instability analysis.

Figure 6 and table 1 show the convergence history of the leading eigenmodes for a representative eigen-
spectra. The same case M8 as in figure 5 is considered here, but for three-dimensional perturbations with
β = 0.22, corresponding to the maximum temporal amplification. The convergence of the unstable eigenmode
requires spatial resolutions significantly lower than the branch of TS/KH eigenmodes.

The growth rate ωi as a function of the spanwise wavenumber β is shown for each separation bubble model
in figure 7. Consistently with results in the literature, this eigenmode is unstable for a bounded range of β
values, and attains the maximum amplification rate for a finite spanwise wavenumber. Identical behavior is
found for the three streamwise extents of the deceleration, but the dominant wavenumber decreases as the
deceleration length increases, denoting a relation between the characteristic streamwise length of the base
bubble and the spanwise wavelength of the instability. Figure 8 shows the neutral curves corresponding to
the three deceleration lengths, as function of spanwise wavenumber and peak reversed flow. The reversed
flow, and not a Reynolds number, is consider here again to be the critical parameter for the instability,
provided that the underlying physical mechanism, a centrifugal instability, is also inviscid in nature and the
Reynolds numbers considered are high enough for the viscous damping to be unimportant. The critical peak
recirculation, i.e. the value of the reversed flow urev for which the eigenmode becomes unstable, changes
from one streamwise extent to other, but is well below urev = 10% in the cases considered. Figure 9 shows
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Figure 7. Temporal amplification rate ωi against spanwise wavenumber β for the steady three-dimensional
global mode. a) S cases; b) M cases; c) L cases.

the streamwise and spanwise velocity components corresponding to the three-dimensional instability for a
characteristic case.

Topological reconstructions of the flow field resulting from the amplification of the centrifugal eigenmode
demonstrated that this instability leads to the breakdown of the base two-dimensional bubble into inde-
pendent spanwise-periodic separation regions.28 The resulting topologies suggest that the steady centrifugal
instability is responsible for the three-dimensional separation structures observed experimentally54, 55 on iced
airfoils. An analogous work29 considering a stalled NACA 0015 airfoil, a geometry for which trailing edge
stall occurs, revealed the presence of a centrifugal unstable eigenmode akin to the present one; the flow
topologies originated by the instability also related the three-dimensional instability of separation bubbles
to the stall cells.30, 32, 56

V. Conclusions

The linear global instability of a series of model laminar separation bubbles is analyzed here, with
the aim of determining the possible routes to three-dimensionalization and unsteadiness of nominally two-
dimensional base states. Attention is focused on the two main global mechanisms that have been proposed
in the literature, namely the behavior of the separated region as a global oscillator due to spatial regions
of absolute instability of planar waves, driven by the Kelvin-Helmholtz mechanism; and the steady three-
dimensionalization of the flow exerted by a steady centrifugal eigenmode. The main objective of the analyses
is the determination of the primary instability, i.e. which of the two global mechanisms becomes active first,
as the strength of the recirculation region increases. Both kinds of instabilities are of inviscid nature, and

11 of 15

American Institute of Aeronautics and Astronautics



6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11
0

0.1

0.2

0.3

0.4

0.5

 

 

β

urev%

S

M

L

Figure 8. Neutral curves (solid lines) for the steady three-dimensional global mode, depending on the spanwise
wavenumber β and the peak reversed flow urev%, for the the three deceleration lengths. The dashed lines
correspond to the most amplified spanwise wavenumber.

the Reynolds number is expected to have a very limited effect as long as it is high enough. In line with other
works in the literature, the peak reversed flow urev was used here as a measure of the bubble strength.

Two different methodologies for linear instability analyses have been employed. The first one, based on
a WKBJ approximation and local instability eigenvalue problems, is concluded to be more appropriate to
the study of the oscillator behavior. The second methodology, based on the solution of two-dimensional
eigenvalue problems that do not impose a particular behavior to the perturbation shapes, enables the study
of non wave-like perturbations like the steady three-dimensional instability. The oscillator behavior can also
be studied using this methodology, but prohibitively high resolutions seem to be required for the convergence
of the eigenspectra. Some works in the literature52, 53 addressing the instability of similar laminar separation
bubbles, employed spatial resolutions lower than those employed here. The convergence study presented here
suggests that the temporal amplification of wave-like eigenmodes (i.e. the presence of an unstable global
oscillator) observed in those works might be an artifact of under-resolutions.

The present analyses show that the instability of planar disturbance waves is only of convective nature
for all the model laminar separation bubble considered, a result in line with their relatively low recirculation
urev < 12% compared to the urev ≈ 20% threshold values found in the literature9, 20, 21, 34, 36 for the onset
of absolute instability. On the other hand, the three-dimensional, centrifugal mechanism becomes linearly
unstable about urev ≈ 7%. The trends observed on the global growth rates for both global instability mech-
anisms as the peak reversed flow or the separated region extent increase do not indicate that the oscillator
mechanism would become unstable and dominate over the three-dimensionalization if longer separation bub-
bles were considered. It is concluded that the primary instability mechanism acting on laminar separation
bubbles on a flat-plate boundary layer is a steady three-dimensionalization of the base flow, rather than
a two-dimensional vortex-shedding originated by local instability of the shear-layer. Recent experimental
observations in the separated boundary-layer flow after a bump57 show the same bifurcation path. These
findings are also in line with three-dimensional direct numerical simulations of flat-plate laminar separation
bubbles34, 36 showing unsteadiness at urev ≤ 10%, while two-dimensional simulations require the urev ≈ 20%
reversed flow mentioned before.
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Figure 9. Perturbation velocity components corresponding to the global oscillator mode (up) and the most
unstable three dimensional global instability, for the case M8. The black dashed line shows the separation
streamline of the base flow.
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