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In this paper we examine triggering in a simple linearly-stable thermoacoustic system

using techniques from flow instability and optimal control. Firstly, for a noiseless system,

we find the initial states that have highest energy growth over given times and from given

energies. Secondly, by varying the initial energy, we find the lowest energy that just trig-

gers to a stable periodic solution. We show that the corresponding initial state grows first

towards an unstable periodic solution and, from there, to the stable periodic solution. This

exploits linear transient growth, which arises due to nonnormality in the governing equa-

tions and is directly analogous to bypass transition to turbulence. Thirdly, we introduce

noise that has similar spectral characteristics to this initial state. We show that, when

triggering from low noise levels, the system grows to high amplitude self-sustained oscilla-

tions by first growing towards the unstable periodic solution of the noiseless system. This

helps to explain the experimental observation that linearly-stable systems can trigger to

self-sustained oscillations even with low background noise.

Nomenclature

E acoustic energy
E0 initial acoustic energy
F1G acoustic momentum equation
F2G acoustic energy equation
G maximum acoustic energy growth over a given time
Gmax maximum acoustic energy growth over all times
j mode number
J cost functional
L Lagrangian functional
N total number of modes
t time
T optimization time
uf velocity at the hot wire
u state vector containing η1 to ηN

p state vector containing η1/π to ηN/Nπ
x state vector containing (u;p)
x0 initial state vector
xf position of the hot wire within the Rijke tube (0 to 1)
β heat release parameter
ηj amplitude of the jth mode representing velocity
ηj/jπ amplitude of the jth mode representing pressure
τ time delay between a velocity fluctuation and a heat release fluctuation
ζj damping of the jth mode
|| · || 2-norm
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I. Introduction

In the field of flow instability there has recently been a surge of interest in bypass transition to turbu-
lence1,2. In brief, this is a mechanism through which a small perturbation grows transiently and then triggers
turbulence even when the corresponding laminar base flow has no unstable eigenvalues. This paper explores
an analogous mechanism in thermoacoustics, through which a small perturbation triggers high amplitude
self-sustained oscillations even when the unperturbed system has no unstable eigenvalues. Although flow
instability differs from thermoacoustics and turbulence differs from sustained oscillations, the two situations
are both nonlinear and nonnormal, which suggests that the transition process could be similar.

Triggering has been observed in solid rocket motors, liquid rocket motors and laboratory experiments3−5.
Triggering is usually caused by large amplitude disturbances, such as a bomb placed within a combustion
chamber. This is easy to explain: if a system can support large amplitude self-sustained oscillations and is
given a large amplitude pulse, it can be attracted towards this oscillating state. Triggering can also arise
from small amplitude disturbances, of order of the background noise level4(Ch.1). This is harder to explain:
how could some initial states grow to large amplitude self-sustained oscillations even though the system is
linearly stable and the states’ initial energy is only a small fraction of the final energy?

A clue to this may lie in hydrodynamics. In many eigenvalue-stable laminar flows, such as Poiseuille
and Couette flow at moderate Reynolds number, certain initial perturbations grow transiently before they
eventually decay6. The perturbation kinetic energy increases by a factor of around 1000 during this transient
period7. This growth arises because the eigenfunctions of the linearized stability operator are nonorthogonal.
(Non-orthogonal eigenfunctions are a feature of nonnormal operators; a matrix or operator L is nonnormal if
it does not satisfy L+L = LL+, where L+ is the adjoint of L.) This means that some initial states comprise
eigenfunctions with large amplitudes that largely cancel out. If the eigenfunctions of such states decay at
different rates, the states grow initially even though all the eigenfunctions eventually decay.2 When the
nonlinear development is taken into account, these can trigger turbulence in the manner described by simple
models1,8.

In flow instability, bypass transition can be divided conceptually into five stages.9 The first stage is
initiation of small perturbations to the flow. The second stage is linear amplification of these perturbations
due to nonnormal growth, as described above. The third stage is nonlinear saturation into a new steady or
quasi-steady periodic state. The fourth stage is growth of secondary instabilities on top of this periodic base
flow. The fifth stage is breakdown to turbulence, where nonlinearities and/or symmetry-breaking instabilities
excite an increasing number of scales in the flow. This idealization provides a useful framework with which
to view bypass transition, even for complicated flows.

A similar framework can be used for thermoacoustics. Stage 2 will be similar because the eigenfunctions of
the linearized thermoacoustic stability operator are also nonorthogonal10 and can therefore lead to transient
growth11,12. Thermo-acoustic systems are nonlinear so they will saturate to new steady or quasi-steady
states, as in stage 3, although these states could be considerably simpler than those found in fluid mechanics.
Stage 4 will be similar if the quasi-steady states found in stage 3 are unstable and subsequently lead to high
amplitude self-sustained oscillations. Stage 5, breakdown to turbulence, would not be expected in thermo-
acoustic systems.

The aim of this paper is to study the triggering mechanism in a simple model of the horizontal Rijke tube,
particularly when initiated from low initial amplitudes. The initial state that causes maximum energy growth
will be calculated over a wide range of initial energies using nonlinear adjoint looping13. The evolution from
low energy initial states will be compared with the sequence of events found during bypass transition to
turbulence. Finally, the evolution will be calculated in the presence of varying degrees of background noise
in order to see whether a noisy system follows the same sequence of events during triggering. This will allow
a better comparison with experimental data.

II. The model of the horizontal Rijke tube

The thermoacoustic system examined in this paper is a horizontal Rijke tube11,13. (Further details
can be found in these references.) This is a tube in which a hot wire is placed distance xf from one end
and through which a base flow is imposed. The heat release at the wire is characterized by a parameter,
β, which can be thought of as a nondimensional wire temperature. Surface heat transfer, convection and
diffusion between the wire and the fluid is modelled by a constant time delay, τ , between the time when the
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Figure 1. Bifurcation diagram for the thermoacoustic system in this paper. E is the minimum energy on the respective
periodic solution and β is the heat release parameter. There are two pairs of periodic solutions: the lower, at E < 0.5,
in which the amplitude of the perturbation velocity is less than the mean flow velocity, and the upper, at E > 0.5, in
which the amplitude of the perturbation velocity is greater than the mean flow velocity. The red lines show the values
of β examined in this paper.

velocity acts and the time when the corresponding heat release is felt by the perturbation. This system can
support self-sustained thermoacoustic oscillations. The nondimensionalized governing equations, which are
for evolution of the velocity and pressure perturbations, are nonlinear Delay Differential Equations (DDEs).
These are discretized by projecting onto the fundamental acoustic modes of the tube. The discretized
nonlinear governing equations for each mode, j are:

F1G ≡
d

dt
ηj − jπ

(

η̇j

jπ

)

= 0, (1)

F2G ≡
d
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)
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)

sin(jπxf ) = 0, (2)

where

uf(t − τ) =
N
∑

k=1

ηk(t − τ) cos(kπxf ). (3)

The state of the system is given by the amplitudes of the Galerkin modes that represent velocity,
ηj , and those that represent pressure, η̇j/jπ. These are given the notation u ≡ (η1, . . . , ηN )T and p ≡
(η̇1/π, . . . , ˙ηN/Nπ)T . The state vector of the discretized system is the column vector x ≡ (u;p). The pa-
rameters of the system are the time delay, τ , the heat release, β, the flame position, xf and the damping coeffi-
cients, ζj . The values used in this paper are τ = 0.02, β = 0.75, 0.80, 0.85, xf = 0.3 and ζj = 0.05j2+0.01j1/2

with 10 modes. These values are typical of a laboratory-scale Rijke tube14.
Although the nonlinear DDEs (1–3) are used in this paper, it is worth mentioning that they can be lin-

earized in two steps. The first step is to linearize the square root term, which generates a set of linear DDEs
called the ‘velocity-linearized’ system. The second step is to linearize the time delay, which generates a set
of linear Ordinary Differential Equations ODEs called the ‘fully-linearized’ system. The fully-linearized gov-
erning equations are nonself-adjoint, which means that their corresponding eigenfunctions are nonorthogonal
and can therefore cause nonnormal transient growth even when the system is linearly stable.11

In this paper, the magnitude of the acoustic oscillations is quantified by the acoustic energy per unit
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Figure 2. Contours of G in the (T, E0)-plane for the system with β = 0.75, found with nonlinear adjoint looping18. There
are several local maxima. One maximum, which occurs at moderate T and moderate E0, corresponds to initial states
that are similar to the linear optimal. Other maxima, which occur at large T and large E0, correspond to initial states
that grow to self-sustained oscillations.

volume, where || · || denotes the 2-norm:
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1

2
u2 +

1
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η2
j +
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(
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)2

=
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2
xHx =

1

2
||x||2. (4)

III. The Bifurcation diagram

The bifurcation diagram for this system, calculated with a continuation method13,15,16, is shown in Fig.
1. Each point on each line corresponds to a periodic solution, the minimum energy of which is plotted. There
are two pairs of solutions: the lower, at E < 0.5, in which the amplitude of the perturbation velocity is less
than the mean flow velocity, and the upper, at E > 0.5, in which the amplitude of the perturbation velocity
is greater than the mean flow velocity. For β < 0.859, there is a stable fixed point at zero amplitude. At the
linear stability threshold, β = 0.859, there is a subcritical Hopf bifurcation to the lower unstable periodic
solution. This unstable periodic solution becomes the lower stable periodic solution at the lower saddle node
bifurcation at β = 0.714. Similarly, the upper unstable periodic solution becomes the upper stable periodic
solution at the upper saddle node bifurcation at β = 0.485. For β between the saddle node bifurcations and
the Hopf bifurcation, the system is susceptible to triggering. This range of β is also known as ‘linearly stable
but nonlinearly unstable’.
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Figure 3. Maximum growth rate, G(T, E0), over a wide range of initial energies, E0, at times T = 15, 20, 40, 80 for the
system with β = 0.75. There are two maxima. One occurs at E0 ∼ 0.1 and has small Gmax. The other occurs at E0 ∼ 1
and has large Gmax. As the optimization time increases, the two maxima become sharper and more distinct. The blue
and red circles show the initial states whose evolution is shown in Figs. 4 and 5.

IV. Finding linear and nonlinear optimal initial states

The optimal initial state is defined as the initial state that has the maximum acoustic energy growth over
a given time, T . This growth is given the symbol G:

G(T ) =
max
x0

||x(T )||2

||x0||2
. (5)

In the linear system, G is a function only of T . For this system, the maximum possible value of G can be
found by performing a second optimization in T . This optimum is given the symbol Gmax and the time at
which it occurs is given the symbol Tmax. The optimal initial state of the linearized system, which gives
rise to G(T ), can be found easily from the Singular Value Decomposition (SVD) of the linearized governing
equations expressed in matrix form2,11. This is not the same, however, as the optimal initial state of the
nonlinear system, which cannot be found from the SVD.

The technique used in this paper to find the optimal initial state of the nonlinear governing equations is
adapted from optimal control13,17. In brief, a cost functional, J , is defined. It is convenient if this is the
acoustic energy at time T divided by the initial acoustic energy, in which case the optimal value of J is
simply equal to G. A Lagrangian functional, L, is then defined as the cost functional, J , minus a set of inner
products. These inner products multiply the governing equations by one set of Lagrange multipliers and the
initial state by another set of Lagrange multipliers. When all variations of L with respect to the Lagrange
multipliers, state variables, x, and initial state, x0, are zero then an initial state has been found that optimizes
J and satisfies the governing equations. This process finds local optima. Another optimization routine is
required to find the global optimum. In this paper, local optima are found from 100 randomly-chosen initial
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Figure 4. Evolution of the acoustic energy, E(t), from the optimal initial states at E0 ∼ 0.1 and T = 20, circled blue in
Fig. 3. The solid black line shows the minimum energy on the lower stable periodic solution. The dashed black line
shows the minimum energy on the lower unstable periodic solution. The top two frames show initial states that evolve
directly towards the stable fixed point at zero. The bottom two frames show initial states that evolve directly towards
the stable periodic solution. The third frame (middle left) shows an initial state that initially evolves towards the lower
unstable periodic solution and then grows towards the lower stable periodic solution.

states. This is robust but is not computationally efficient. It is highly likely that a better procedure could
be found.

V. Non-linear optimal initial states

In the linearized systems, G is a function only of T . In the nonlinear system, G is also a function of the
initial state’s amplitude, which in this paper is quantified by the initial acoustic energy, E0. Figure 2 shows
a map of G(T, E0) for the case with β = 0.75, taken from Ref. 18. This reveals that G has several local
maxima. One maximum, which occurs at moderate T and moderate E0, corresponds to initial states that
are similar to the linear optimal. Other maxima, which occur at large T and large E0, correspond to initial
states that grow to self-sustained oscillations18. The aim of this paper is to explore the maxima at large T
and large E0.

The maximum growth, G(T, E0), for long optimization times (T = 15, 20, 40, 80) and high initial energies
is shown in Fig. 3. This extends beyond the top right corner of Fig. 2. There are two maxima. One occurs
at E0 ∼ 0.1 and has small Gmax. The other occurs at E0 ∼ 1 and has large Gmax. As the optimization time
increases, the two maxima become sharper and more distinct.

Figure 4 shows the evolution of the acoustic energy from some optimal initial states near the first max-
imum on Fig. 3. In all cases, there is strong transient growth in the first cycle, which can be seen at the
far left of each frame. In the top two frames, the energy subsequently decays to the zero fixed point. In the
bottom four frames, the energy subsequently grows to the stable periodic solution. From this figure, it can
be seen that the triggering threshold lies between E0 = 0.105 and E0 = 0.115.

In the third frame of Fig. 4, for which E0 = 0.115, the system is initially attracted towards the unstable
periodic solution before growing to the stable periodic solution. This reveals the significance of the unstable
periodic solution to triggering from low initial energies13,18. The unstable periodic solution is a loop that sits
on the boundary between the basins of attraction of the stable periodic solution and the stable fixed point.
All but one of its Floquet multipliers are stable, which means that it attracts locally in every direction but
one. No other periodic solutions or fixed points exist on the basin boundary, which means that all states
exactly on the basin boundary must be attracted towards the unstable periodic solution. All states very
slightly off the basin boundary follow neighbouring trajectories towards the unstable periodic solution but
are then repelled either to the stable fixed point or to the stable periodic solution. In other words, all low
energy triggering events must pass very close to the unstable periodic solution. The third frame of Fig. 4
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Figure 5. Evolution of the acoustic energy, E(t), from the optimal initial states at E0 ∼ 1 and T = 40, circled red in
Fig. 3. The solid black lines show the minimum energy on the lower and upper stable periodic solutions. The dashed
black lines show the minimum energy on the lower and upper unstable periodic solutions. The top two frames show
initial states that evolve directly towards the lower stable periodic solution. The bottom two frames show initial states
that evolve directly towards the upper stable periodic solution. The third frame (middle left) shows an initial state
that initially evolves towards the upper unstable periodic solution and then grows towards the upper stable periodic
solution.

shows an example of such a trajectory.
Figure 5 shows the evolution of the acoustic energy from some optimal initial states near the second

maximum on Fig. 3. In the top two frames, the energy decays to the lower stable periodic solution. In the
bottom four frames, the energy grows to the upper stable periodic solution. It can be seen that the threshold
for triggering to the upper stable periodic solution lies between E0 = 0.614 and E0 = 0.673. For the same
reasons as before, all low energy triggering events to the upper stable periodic solution must pass very close
to the upper unstable periodic solution. The third frame of Fig. 5 shows an example of such a trajectory.
The same qualitative behaviour is found for the case with β = 0.80, which is shown in Fig. 6.

The shape of G(T, E0) in Fig. 3 can now be explained. The first maximum, at E0 ∼ 0.1, corresponds
to initial states that are close to the basin boundary between the stable fixed point and the lower stable
periodic solution. Around the triggering threshold, these states are attracted first towards the lower unstable
periodic solution, which lies on this basin boundary, before subsequently being attracted to one of the stable
solutions. The energy on the unstable periodic solution oscillates from E = 0.125 (Fig. 1) to E = 0.163
so this attraction involves either transient energy growth, which accounts for the peak at E0 ∼ 0.11, or
transient energy decay, which accounts for the trough at slightly higher E0. The transient energy growth
towards this unstable periodic solution arises from nonnormality in the linearized governing equations13.
The second maximum, at E0 ∼ 1, corresponds to the same behaviour around the upper unstable periodic
solution. As the optimization time increases, the trajectory becomes closer to its final destination, which
means that the peaks and troughs become sharper. For very long optimization times, at which the final
energy must take one of three values, G(T, E0) will have a saw-tooth profile with a vertical ramp at both
triggering thresholds, as is beginning to be seen in the line for T = 80.

In summary, for values of β between the saddle node bifurcations and the Hopf bifurcation, any initial
state must sit within the basin of attraction of either the stable fixed point or a stable periodic solution
(except for states exactly on the basin boundary). If the initial state is far from the basin boundary, as is
usually the case, its evolution towards a stable solution is straightforward. This corresponds to the triggering
from high amplitudes that is readily seen experimentally. If the initial state is close to the basin boundary,
however, it evolves to its final state by firstly passing close to the unstable periodic solution, which sits on
the basin boundary. Crucially, some states grow transiently towards the unstable periodic solution and then
to the stable periodic solution even when they have quite low initial energies. The stages of this evolution
corresponds closely to stages 2, 3 and 4 seen in bypass transition to turbulence9. The corresponding initial
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Figure 6. As for Fig. 4 but for the system with β = 0.80. This has the same qualitative behaviour as the system with
β = 0.75 but the stable and unstable periodic solutions are further apart.

states, which are called the ‘most dangerous’ initial states, are found with the nonlinear adjoint looping
algorithm outlined here with a long optimization time. This gives the same result as that found by working
backwards from the unstable periodic solution13,18.

VI. Triggering by background noise
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Figure 7. The most dangerous initial state for the system with β = 0.75. Of all the states that can reach the stable
lower periodic solution, this is the one with the lowest energy. Most of its energy is in the first mode, but a significant
amount is in modes 2 3 and 4.
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Figure 8. The noise profile imposed on the Rijke tube in (a) the frequency domain and (b) the time domain, with
a strength of 0.5%. The inset in (b) is 20 time units long. This noise profile has been chosen because it has similar
spectral characteristics to the most dangerous initial state in Fig. 7. The first mode in Fig. 7 has frequency 0.5.

It is unrealistic to assume that a perfectly known initial state could be imposed on a perfectly quiet
Rijke tube, as is modelled in section V to reveal the triggering mechanism. It is more realistic to include
background noise, whose amplitude and spectral characteristics can be well-defined, and to examine how
this noise causes triggering. This paper considers additive noise, where a small stochastic perturbation is
added continually to the system, in this case to the velocity at the flame. Other types of noise are parametric
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Figure 9. The evolution of pressure and energy for the system at three different noise amplitudes and β values: (a)
1.2% noise with β = 0.75, (b) 0.73% noise with β = 0.80 and (c) 0.25% noise with β = 0.85. The solid straight line shows
the minimum energy of the lower stable periodic solution. The dashed straight line shows the minimum energy of the
lower unstable periodic solution. Frame (a) shows direct triggering to the stable periodic solution. Frames (b) and (c)
show triggering via the unstable periodic solution.

noise, where coefficients in the governing equations vary, and multiplicative noise, where noise amplitude is
proportional to the current state of the system.

Figure 7 shows the most dangerous initial state for triggering to the lower stable periodic solution for
β = 0.75. This has highest energy in the first mode, with a small but significant amount in the third and
fourth modes. The noise profile that will project most successfully onto this state has high amplitudes at
lower frequencies, which is labelled pink noise. In numerical simulations19, this type of noise profile has been
found to cause triggering at lower amplitudes than noise whose frequency spectrum is flat (white noise) or
one that has high amplitudes at high frequencies (blue noise). In this paper the pink noise profile shown in
Fig. 8 will be imposed on the system at a variety of amplitudes and only the behaviour around the lower
periodic solution will be considered. These results are reported fully in Ref. 20.

Figure 9 shows pressure and energy as a function of time for the Rijke tube model at three values of β
in the range that is susceptible to triggering (i.e. that is linearly stable but nonlinearly unstable). The noise
is quantified by the amplitude of the velocity fluctuations divided by the velocity of the mean flow. Figure
9(a) shows the case with β = 0.75 and noise of 1.2%. For 7000 time units, the state hovers around the stable
fixed point. Then the energy suddenly increases to that of the stable periodic solution for 2000 time units
and then returns to zero. This can be interpreted as the noise having caused the state to move from the
basin of attraction of the stable fixed point to that of the stable periodic solution and back again. If the
noise is switched off at any point, the system will relax to the stable solution in whose basin it currently sits.

Figure 9(b) shows the case with β = 0.80 and noise of 0.73%. For 8000 time units, the state hovers
around the stable fixed point. Then the energy increases towards a plateau around the unstable periodic
solution and, from there, grows to the stable periodic solution. Figure 9(c) shows the case with β = 0.85
and noise of 0.25%. It has the same qualitative behaviour as that in Fig. 9(b) but is less obscured by noise.
This behaviour can be interpreted in the same way as before but this time the role of the unstable periodic
solution can be seen. At low noise levels, the unstable periodic solution acts as a gateway between the basins
of attraction of the stable fixed point and the stable periodic solution, as was seen in the noiseless case in
section V. This interpretation of Figs. (b) and (c) is consistent with the experimental results in Fig. 15b of
Ref. 21, in which triggering that has been induced by background or combustion noise is seen to occur in
two steps: a jump to an intermediate state followed by growth to a quasi periodic solution.

VII. Conclusions

Perturbations in a thermoacoustic system can grow transiently and trigger self-sustained oscillations even
when the system is linearly stable. The simple model in this paper highlights some important features of
this process. For large amplitude perturbations or noise, triggering occurs when the system is knocked into
a state well within the basin of attraction of the stable periodic solution (bottom frames of Figs. 4, 5 &
6 and Fig. 9a). For small amplitude perturbations or noise, triggering occurs via transient growth to an
intermediate unstable periodic solution, from which the system then grows to a stable periodic state (middle
frames of Figs. 4, 5 & 6 and Fig. 9b-c). This is analogous to the sequence of events observed in bypass
transition to turbulence in fluid mechanical systems and has the same underlying cause.

The initial states that cause maximum growth, G, after long times, T , have been calculated with nonlinear
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adjoint looping13. As T increases, the triggering threshold can be identified increasingly accurately: it lies
at the vertical jump in the saw-tooth profile of G(E0) (Fig. 3). For this system, there are two jumps. One
corresponds to the triggering threshold for the lower stable periodic solution. The other corresponds to the
triggering threshold for the upper stable periodic solution.

Transient growth in real thermoacoustic systems is 105 to 106 times greater than that in the Rijke tube12.
One practical conclusion of this paper is that, even in the linearly stable regime, it may take very little noise
for a real thermoacoustic system to reach high amplitude self-sustained oscillations.
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